Displaying 681 – 700 of 712

Showing per page

[unknown]

Sébastien Alvarez, Nicolas Hussenot (0)

Annales de l’institut Fourier

Vitesse dans le théorème limite central pour certains systèmes dynamiques quasi-hyperboliques

Stéphane Le Borgne, Françoise Pène (2005)

Bulletin de la Société Mathématique de France

Nous présentons une méthode permettant d’établir le théorème limite central avec vitesse en n - 1 / 2 pour certains systèmes dynamiques. Elle est basée sur une propriété de décorrélation forte qui semble assez naturelle dans le cadre des systèmes quasi-hyperboliques. Nous prouvons que cette propriété est satisfaite par les exemples des flots diagonaux sur un quotient compact de SL ( d , ) et les « transformations » non uniformément hyperboliques du tore 𝕋 3 étudiées par Shub et Wilkinson.

Wave of Chaos and Pattern Formation in Spatial Predator-Prey Systems with Holling Type IV Predator Response

R. K. Upadhyay, N. Kumari, V. Rai (2008)

Mathematical Modelling of Natural Phenomena

The challenges to live in the open water and the diversity of habitats in the marine environments prompts phytoplankton to devise strategies which often involve production of toxins by Harmful Algal Bloom (HAB) and rapid production of metabolites from non-toxic precursor. The functional response of the predator is described by Holling type IV. We investigate wave phenomena and non-linear non-equilibrium pattern formation in a phytoplankton-zooplankton system with Holling type IV functional response....

ω-Limit sets for triangular mappings

Victor Jiménez López, Jaroslav Smítal (2001)

Fundamenta Mathematicae

In 1992 Agronsky and Ceder proved that any finite collection of non-degenerate Peano continua in the unit square is an ω-limit set for a continuous map. We improve this result by showing that it is valid, with natural restrictions, for the triangular maps (x,y) ↦ (f(x),g(x,y)) of the square. For example, we show that a non-trivial Peano continuum C ⊂ I² is an orbit-enclosing ω-limit set of a triangular map if and only if it has a projection property. If C is a finite union of Peano continua then,...

Ω-stability for maps with nonwandering critical points

J. Delgado, N. Romero, A. Rovella, F. Vilamajó (2007)

Fundamenta Mathematicae

Sufficient conditions for a map having nonwandering critical points to be Ω-stable are introduced. It is not known if these conditions are necessary, but they are easily verified for all known examples of Ω-stable maps. Their necessity is shown in dimension two. Examples are given of Axiom A maps that have no cycles but are not Ω-stable.

Currently displaying 681 – 700 of 712