Displaying 21 – 40 of 43

Showing per page

Intertwined internal rays in Julia sets of rational maps

Robert L. Devaney (2009)

Fundamenta Mathematicae

We show how the well-known concept of external rays in polynomial dynamics may be extended throughout the Julia set of certain rational maps. These new types of rays, which we call internal rays, meet the Julia set in a Cantor set of points, and each of these rays crosses infinitely many other internal rays at many points. We then use this construction to show that there are infinitely many disjoint copies of the Mandelbrot set in the parameter planes for these maps.

Introduction

Pascale Roesch (2012)

Annales de la faculté des sciences de Toulouse Mathématiques

Misiurewicz maps unfold generically (even if they are critically non-finite)

Sebastian van Strien (2000)

Fundamenta Mathematicae

We show that in normalized families of polynomial or rational maps, Misiurewicz maps (critically finite or infinite) unfold generically. For example, if f λ 0 is critically finite with non-degenerate critical point c 1 ( λ 0 ) , . . . , c n ( λ 0 ) such that f λ 0 k i ( c i ( λ 0 ) ) = p i ( λ 0 ) are hyperbolic periodic points for i = 1,...,n, then  IV-1. Age impartible......................................................................................................................................................................... 31   λ ( f λ k 1 ( c 1 ( λ ) ) - p 1 ( λ ) , . . . , f λ k d - 2 ( c d - 2 ( λ ) ) - p d - 2 ( λ ) ) is a local diffeomorphism...

On the continuity of Hausdorff dimension of Julia sets and similarity between the Mandelbrot set and Julia sets

Juan Rivera-Letelier (2001)

Fundamenta Mathematicae

Given d ≥ 2 consider the family of polynomials P c ( z ) = z d + c for c ∈ ℂ. Denote by J c the Julia set of P c and let d = c | J c i s c o n n e c t e d be the connectedness locus; for d = 2 it is called the Mandelbrot set. We study semihyperbolic parameters c d : those for which the critical point 0 is not recurrent by P c and without parabolic cycles. The Hausdorff dimension of J c , denoted by H D ( J c ) , does not depend continuously on c at such c d ; on the other hand the function c H D ( J c ) is analytic in - d . Our first result asserts that there is still some continuity...

On the continuity of the Hausdorff dimension of the Julia-Lavaurs sets

Ludwik Jaksztas (2011)

Fundamenta Mathematicae

Let f₀(z) = z²+1/4. We denote by ₀ the set of parameters σ ∈ ℂ for which the critical point 0 escapes from the filled-in Julia set K(f₀) in one step by the Lavaurs map g σ . We prove that if σ₀ ∈ ∂₀, then the Hausdorff dimension of the Julia-Lavaurs set J 0 , σ is continuous at σ₀ as the function of the parameter σ ¯ if and only if H D ( J 0 , σ ) 4 / 3 . Since H D ( J 0 , σ ) > 4 / 3 on a dense set of parameters which correspond to preparabolic points, the lower semicontinuity implies the continuity of H D ( J 0 , σ ) on an open and dense subset of ∂₀.

Parapuzzle of the multibrot set and typical dynamics of unimodal maps

Artur Avila, Mikhail Lyubich, Weixiao Shen (2011)

Journal of the European Mathematical Society

We study the parameter space of unicritical polynomials f c : z z d + c . For complex parameters, we prove that for Lebesgue almost every c , the map f c is either hyperbolic or infinitely renormalizable. For real parameters, we prove that for Lebesgue almost every c , the map f c is either hyperbolic, or Collet–Eckmann, or infinitely renormalizable. These results are based on controlling the spacing between consecutive elements in the “principal nest” of parapuzzle pieces.

Perturbations of flexible Lattès maps

Xavier Buff, Thomas Gauthier (2013)

Bulletin de la Société Mathématique de France

We prove that any Lattès map can be approximated by strictly postcritically finite rational maps which are not Lattès maps.

Preperiodic dynatomic curves for z z d + c

Yan Gao (2016)

Fundamenta Mathematicae

The preperiodic dynatomic curve n , p is the closure in ℂ² of the set of (c,z) such that z is a preperiodic point of the polynomial z z d + c with preperiod n and period p (n,p ≥ 1). We prove that each n , p has exactly d-1 irreducible components, which are all smooth and have pairwise transverse intersections at the singular points of n , p . We also compute the genus of each component and the Galois group of the defining polynomial of n , p .

Puiseux series polynomial dynamics and iteration of complex cubic polynomials

Jan Kiwi (2006)

Annales de l’institut Fourier

We let 𝕃 be the completion of the field of formal Puiseux series and study polynomials with coefficients in 𝕃 as dynamical systems. We give a complete description of the dynamical and parameter space of cubic polynomials in 𝕃 [ ζ ] . We show that cubic polynomial dynamics over 𝕃 and are intimately related. More precisely, we establish that some elements of 𝕃 naturally correspond to the Fourier series of analytic almost periodic functions (in the sense of Bohr) which parametrize (near infinity) the quasiconformal...

Repelling periodic points and landing of rays for post-singularly bounded exponential maps

Anna Miriam Benini, Mikhail Lyubich (2014)

Annales de l’institut Fourier

We show that repelling periodic points are landing points of periodic rays for exponential maps whose singular value has bounded orbit. For polynomials with connected Julia sets, this is a celebrated theorem by Douady, for which we present a new proof. In both cases we also show that points in hyperbolic sets are accessible by at least one and at most finitely many rays. For exponentials this allows us to conclude that the singular value itself is accessible.

Shadow trees of Mandelbrot sets

Virpi Kauko (2003)

Fundamenta Mathematicae

The topology and combinatorial structure of the Mandelbrot set d (of degree d ≥ 2) can be studied using symbolic dynamics. Each parameter is mapped to a kneading sequence, or equivalently, an internal address; but not every such sequence is realized by a parameter in d . Thus the abstract Mandelbrot set is a subspace of a larger, partially ordered symbol space, Λ d . In this paper we find an algorithm to construct “visible trees” from symbolic sequences which works whether or not the sequence is realized....

Strong bifurcation loci of full Hausdorff dimension

Thomas Gauthier (2012)

Annales scientifiques de l'École Normale Supérieure

In the moduli space d of degree  d rational maps, the bifurcation locus is the support of a closed ( 1 , 1 ) positive current T bif which is called the bifurcation current. This current gives rise to a measure μ bif : = ( T bif ) 2 d - 2 whose support is the seat of strong bifurcations. Our main result says that supp ( μ bif ) has maximal Hausdorff dimension 2 ( 2 d - 2 ) . As a consequence, the set of degree  d rational maps having ( 2 d - 2 ) distinct neutral cycles is dense in a set of full Hausdorff dimension.

The Bernoulli shift as a basic chaotic dynamical system

Kučera, Václav (2019)

Programs and Algorithms of Numerical Mathematics

We give a brief introduction to the Bernoulli shift map as a basic chaotic dynamical system. We give several examples where the iterates of a~mapping can be understood using the Bernoulli shift. Namely, the iteration of real interval maps and iteration of quadratic functions in the complex plain.

The dynamics of two-circle and three-circle inversion

Daniel M. Look (2008)

Fundamenta Mathematicae

We study the dynamics of a map generated via geometric circle inversion. In particular, we define multiple circle inversion and investigate the dynamics of such maps and their corresponding Julia sets.

Currently displaying 21 – 40 of 43