On rational maps with two critical points.
We study conditions involving the critical set of a regular polynomial endomorphism f∶ℂ2↦ℂ2 under which all complete external rays from infinity for f have well defined endpoints.
We use Beurling estimates and Zdunik's theorem to prove that the support of a lamination of the circle corresponding to a connected polynomial Julia set has zero length, unless f is conjugate to a Chebyshev polynomial. Equivalently, except for the Chebyshev case, the biaccessible points in the connected polynomial Julia set have zero harmonic measure.
We prove that for some families of entire functions whose Julia set is the complement of the basin of attraction every branch of a tree of preimages starting from this basin is convergent.
A proof of the C⁰-closing lemma for noninvertible discrete dynamical systems and its extension to the noncompact case are presented.
Given d ≥ 2 consider the family of polynomials for c ∈ ℂ. Denote by the Julia set of and let be the connectedness locus; for d = 2 it is called the Mandelbrot set. We study semihyperbolic parameters : those for which the critical point 0 is not recurrent by and without parabolic cycles. The Hausdorff dimension of , denoted by , does not depend continuously on c at such ; on the other hand the function is analytic in . Our first result asserts that there is still some continuity...
Let f₀(z) = z²+1/4. We denote by ₀ the set of parameters σ ∈ ℂ for which the critical point 0 escapes from the filled-in Julia set K(f₀) in one step by the Lavaurs map . We prove that if σ₀ ∈ ∂₀, then the Hausdorff dimension of the Julia-Lavaurs set is continuous at σ₀ as the function of the parameter if and only if . Since on a dense set of parameters which correspond to preparabolic points, the lower semicontinuity implies the continuity of on an open and dense subset of ∂₀.
We prove that the height of a foliated surface of Kodaira dimension zero belongs to (1, 2, 3, 4, 5, 6, 8, 10, 12). We also construct an explicit projective model. for Brunella's very special foliation.
e prove that the hyperbolic Hausdorff dimension of Fr Ω, the boundary of the simply connected immediate basin of attraction Ω to an attracting periodic point of a rational mapping of the Riemann sphere, which is not a finite Blaschke product in some holomorphic coordinates, or a 2:1 factor of a Blaschke product, is larger than 1. We prove a "local version" of this theorem, for a boundary repelling to the side of the domain. The results extend an analogous fact for polynomials...
In this paper, the local convergence analysis of the family of Kung-Traub's two-point method and the convergence ball for this family are obtained and the dynamical behavior on quadratic and cubic polynomials of the resulting family is studied. We use complex dynamic tools to analyze their stability and show that the region of stable members of this family is vast. Numerical examples are also presented in this study. This method is compared with several widely used solution methods by solving test...
We extend the Killeen-Taylor study [Nonlinearity 13 (2000)] by investigating in different Banach spaces (,c₀(ℕ),c(ℕ)) the point, continuous and residual spectra of stochastic perturbations of the shift operator associated to the stochastic adding machine in base 2 and in the Fibonacci base. For the base 2, the spectra are connected to the Julia set of a quadratic map. In the Fibonacci case, the spectrum is related to the Julia set of an endomorphism of ℂ².
We study the group Aut(ℱ) of (self) isomorphisms of a holomorphic foliation ℱ with singularities on a complex manifold. We prove, for instance, that for a polynomial foliation on ℂ² this group consists of algebraic elements provided that the line at infinity ℂP(2)∖ℂ² is not invariant under the foliation. If in addition ℱ is of general type (cf. [20]) then Aut(ℱ) is finite. For a foliation with hyperbolic singularities at infinity, if there is a transcendental automorphism then the foliation is either...
We introduce the notion of W-measurable sensitivity, which extends and strictly implies canonical measurable sensitivity, a measure-theoretic version of sensitive dependence on initial conditions. This notion also implies pairwise sensitivity with respect to a large class of metrics. We show that nonsingular ergodic and conservative dynamical systems on standard spaces must be either W-measurably sensitive, or isomorphic mod 0 to a minimal uniformly rigid isometry. In the finite measure-preserving...