Displaying 61 – 80 of 378

Showing per page

Contracting rigid germs in higher dimensions

Matteo Ruggiero (2013)

Annales de l’institut Fourier

Following Favre, we define a holomorphic germ f : ( d , 0 ) ( d , 0 ) to be rigid if the union of the critical set of all iterates has simple normal crossing singularities. We give a partial classification of contracting rigid germs in arbitrary dimensions up to holomorphic conjugacy. Interestingly enough, we find new resonance phenomena involving the differential of f and its linear action on the fundamental group of the complement of the critical set.

Contractive curves.

Bonifant, Araceli, Dabija, Marius (2002)

International Journal of Mathematics and Mathematical Sciences

Control a state-dependent dynamic graph to a pre-specified structure

Fei Chen, Zengqiang Chen, Zhongxin Liu, Zhuzhi Yuan (2009)

Kybernetika

Recent years have witnessed an increasing interest in coordinated control of distributed dynamic systems. In order to steer a distributed dynamic system to a desired state, it often becomes necessary to have a prior control over the graph which represents the coupling among interacting agents. In this paper, a simple but compelling model of distributed dynamical systems operating over a dynamic graph is considered. The structure of the graph is assumed to be relied on the underling system's states....

Convergence and uniqueness problems for Dirichlet forms on fractals

Roberto Peirone (2000)

Bollettino dell'Unione Matematica Italiana

M 1 è un particolare operatore di minimizzazione per forme di Dirichlet definite su un sottoinsieme finito di un frattale K che è, in un certo senso, una sorta di frontiera di K . Viene talvolta chiamato mappa di rinormalizzazione ed è stato usato per definire su K un analogo del funzionale u grad u 2 e un moto Browniano. In questo lavoro si provano alcuni risultati sull'unicità dell'autoforma (rispetto a M 1 ), e sulla convergenza dell'iterata di M 1 rinormalizzata. Questi risultati sono collegati con l'unicità...

Convergence of pinching deformations and matings of geometrically finite polynomials

Peter Haïssinsky, Lei Tan (2004)

Fundamenta Mathematicae

We give a thorough study of Cui's control of distortion technique in the analysis of convergence of simple pinching deformations, and extend his result from geometrically finite rational maps to some subset of geometrically infinite maps. We then combine this with mating techniques for pairs of polynomials to establish existence and continuity results for matings of polynomials with parabolic points. Consequently, if two hyperbolic quadratic polynomials tend to their respective root polynomials...

Counting fixed points of a finitely generated subgroup of Aff [C].

F. Loray, M. Van Der Put, F. Recher (2004)

Publicacions Matemàtiques

Given a finitely generated subgroup G of the group of affine transformations acting on the complex line C, we are interested in the quotient Fix( G)/G. The purpose of this note is to establish when this quotient is finite and in this case its cardinality. We give an application to the qualitative study of polynomial planar vector fields at a neighborhood of a nilpotent singular point.

Courants dynamiques pluripolaires

Xavier Buff (2011)

Annales de la faculté des sciences de Toulouse Mathématiques

On montre l’existence d’applications rationnelles f : k k telles que f est algébriquement stable  : pour tout n 0 , deg f n = ( deg f ) n ,il existe un unique courant positif fermé T de bidegré ( 1 , 1 ) vérifiant f * T = d · T et k T ω k - 1 = 1 ω est la forme de Fubini-Study sur k et T est pluripolaire  : il existe un ensemble pluripolaire X k tel que X T ω k - 1 = 1

Critical portraits for postcritically finite polynomials

Alfredo Poirier (2009)

Fundamenta Mathematicae

We extend the work of Bielefeld, Fisher and Hubbard on critical portraits to arbitrary postcritically finite polynomials. This gives the classification of such polynomials as dynamical systems in terms of their external ray behavior.

Decay of volumes under iteration of meromorphic mappings

Vincent Guedj (2004)

Annales de l'Institut Fourier

Let f be a meromorphic self-mapping of a compact Kähler manifold. We study the rate of decreasing of volumes under the iteration of f . We use these volume estimates to construct the Green current of f in a quite general setting.

Déformation J-équivalente de polynômes géometriquement finis

Peter Haïssinsky (2000)

Fundamenta Mathematicae

Any geometrically finite polynomial f of degree d ≥ 2 with connected Julia set is accessible by structurally stable sub-hyperbolic polynomials of the same degree. Moreover, they are topologically conjugate to f on their Julia sets.

Deformations of Kähler manifolds with nonvanishing holomorphic vector fields

Jaume Amorós, Mònica Manjarín, Marcel Nicolau (2012)

Journal of the European Mathematical Society

We study compact Kähler manifolds X admitting nonvanishing holomorphic vector fields, extending the classical birational classification of projective varieties with tangent vector fields to a classification modulo deformation in the Kähler case, and biholomorphic in the projective case. We introduce and analyze a new class of 𝑡𝑎𝑛𝑔𝑒𝑛𝑡𝑖𝑎𝑙𝑑𝑒𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛𝑠 , and show that they form a smooth subspace in the Kuranishi space of deformations of the complex structure of X . We extend Calabi’s theorem on the structure of compact Kähler...

Density of periodic sources in the boundary of a basin of attraction for iteration of holomorphic maps: geometric coding trees technique

Feliks Przytycki, Anna Zdunik (1994)

Fundamenta Mathematicae

We prove that if A is a basin of immediate attraction to a periodic attracting or parabolic point for a rational map f on the Riemann sphere, then the periodic points in the boundary of A are dense in this boundary. To prove this in the non-simply connected or parabolic situations we prove a more abstract, geometric coding trees version.

Currently displaying 61 – 80 of 378