Des domaines de Fatou-Bieberbach à plusieurs feuillets
Soit µ la mesure d’équilibre d’un endomorphisme de . Nous montrons ici qu’elle est son unique mesure d’entropie maximale. Nous construisons directement µ comme distribution asymptotique des préimages
Étant donnée une fonction régulière de moyenne nulle sur le tore de dimension , il est facile de voir que ses intégrales ergodiques au-dessus d’un flot de translation “générique”sont bornées. Il y a une dizaine d’années, A. Zorich a observé numériquement une croissance en puissance du temps de ces intégrales ergodiques au-dessus de flots d’hamiltoniens (non-exacts) “génériques”sur des surfaces de genre supérieur ou égal à , et Kontsevich et Zorich ont proposé une explication (conjecturelle) de...
In this paper we introduce a concept of Schauder basis on a self-similar fractal set and develop differential and integral calculus for them. We give the following results: (1) We introduce a Schauder/Haar basis on a self-similar fractal set (Theorems I and I'). (2) We obtain a wavelet expansion for the L²-space with respect to the Hausdorff measure on a self-similar fractal set (Theorems II and II'). (3) We introduce a product structure and derivation on a self-similar fractal set (Theorem III)....
A small perturbation of a rational function causes only a small perturbation of its periodic orbits. We show that the situation is different for transcendental maps. Namely, orbits may escape to infinity under small perturbations of parameters. We show examples where this "diffusion to infinity" occurs and prove certain conditions under which it does not.
Consider a rational map f on the Riemann sphere of degree at least 2 which has no parabolic periodic points. Assuming that f has Rivera-Letelier's backward contraction property with an arbitrarily large constant, we show that the upper box dimension of the Julia set J(f) is equal to its hyperbolic dimension, by investigating the properties of conformal measures on the Julia set.
Nous construisons pour toute correspondance polynomiale d’exposant de Lojasiewicz une mesure d’équilibre . Nous montrons que est approximable par les préimages d’un point générique et que les points périodiques répulsifs sont équidistribués sur le support de . En utilisant ces résultats, nous donnons une caractérisation des ensembles d’unicité pour les polynômes.
This paper is concerned with distributional chaos of time-varying discrete systems in metric spaces. Some basic concepts are introduced for general time-varying systems, including sequentially distributive chaos, weak mixing, and mixing. We give an example of sequentially distributive chaos of finite-dimensional linear time-varying dynamical systems, which is not distributively chaotic of type i (DCi for short, i = 1, 2). We also prove that two uniformly topological equiconjugate time-varying systems...
For n ≥ 2, the family of rational maps contains a countably infinite set of parameter values for which all critical orbits eventually land after some number κ of iterations on the point at infinity. The Julia sets of such maps are Sierpiński curves if κ ≥ 3. We show that two such maps are topologically conjugate on their Julia sets if and only if they are Möbius or anti-Möbius conjugate, and we give a precise count of the number of topological conjugacy classes as a function of n and κ.
We show that two permutable transcendental entire functions may have different dynamical properties, which is very different from the rational functions case.
The paper is concerned with the dynamics of an entire transcendental function whose inverse has only finitely many singularities. It is rpoven that there are no escaping orbits on the Fatou set. Under some extra assumptions the set of escaping orbits has zero Lebesgue measure. If a function depends analytically on parameters then a periodic point as a function of parameters has only algebraic singularities. This yields the Structural Stability Theorem.
This paper is an introduction to dynamics of dianalytic self-maps of nonorientable Klein surfaces. The main theorem asserts that dianalytic dynamics on Klein surfaces can be canonically reduced to dynamics of some classes of analytic self-maps on their orientable double covers. A complete list of those maps is given in the case where the respective Klein surfaces are the real projective plane, the pointed real projective plane and the Klein bottle.
We continue our study of the dynamics of mappings with small topological degree on projective complex surfaces. Previously, under mild hypotheses, we have constructed an ergodic “equilibrium” measure for each such mapping. Here we study the dynamical properties of this measure in detail: we give optimal bounds for its Lyapunov exponents, prove that it has maximal entropy, and show that it has product structure in the natural extension. Under a natural further assumption, we show that saddle points...
We prove complex bounds for infinitely renormalizable real quadratic maps with essentially bounded combinatorics. This is the last missing ingredient in the problem of complex bounds for all infinitely renormalizable real quadratics. One of the corollaries is that the Julia set of any real quadratic map , , is locally connected.
We consider complex dynamics of a critically finite holomorphic map from Pk to Pk, which has symmetries associated with the symmetric group Sk+2 acting on Pk, for each k ≥1. The Fatou set of each map of this family consists of attractive basins of superattracting points. Each map of this family satisfies Axiom A.