Previous Page 2

Displaying 21 – 32 of 32

Showing per page

Statistical stability of geometric Lorenz attractors

José F. Alves, Mohammad Soufi (2014)

Fundamenta Mathematicae

We consider the robust family of geometric Lorenz attractors. These attractors are chaotic, in the sense that they are transitive and have sensitive dependence on initial conditions. Moreover, they support SRB measures whose ergodic basins cover a full Lebesgue measure subset of points in the topological basin of attraction. Here we prove that the SRB measures depend continuously on the dynamics in the weak* topology.

Sur l'équation aux différences affine du premier ordre unidimensionnelle

Augustin Fruchard (1996)

Annales de l'institut Fourier

On étudie les phénomènes de retard à la bifurcation et de butée pour des systèmes discrets lents-rapides du plan. On donne une explication géométrique de ces phénomènes basée sur l’examen de fonctions reliefs. On démontre ensuite l’existence et la vie brève des longs canards, qui sont des trajectoires ne présentant pas de butée. Trois exemples illustrent ces phénomènes. Le premier expose la problématique, le second permet une expérimentation de l’étude théorique sur les longs canards, le troisième...

Sur un théorème de Dulac

Laurent Stolovitch (1994)

Annales de l'institut Fourier

Nous considérons les champs de vecteurs analytiques de ( n , 0 ) de partie linéaire diagonale non nulle et dont les valeurs propres λ i vérifient des relations de résonances toutes engendrées par une seule relation ( r , λ ) = 0 pour un certain vecteur r n non nul. Nous montrons que, dans un système de coordonnées locales holomorphes au voisinages de 0 n , de tels champs de vecteurs se “mettent" sous une forme normale partielle, tout en exhibant des variétés invariantes, si l’on fait une hypothèse de petits diviseurs diophantiens....

Currently displaying 21 – 32 of 32

Previous Page 2