Displaying 21 – 40 of 42

Showing per page

Invariants of complex structures on nilmanifolds

Edwin Alejandro Rodríguez Valencia (2015)

Archivum Mathematicum

Let ( N , J ) be a simply connected 2 n -dimensional nilpotent Lie group endowed with an invariant complex structure. We define a left invariant Riemannian metric on N compatible with J to be minimal, if it minimizes the norm of the invariant part of the Ricci tensor among all compatible metrics with the same scalar curvature. In [7], J. Lauret proved that minimal metrics (if any) are unique up to isometry and scaling. This uniqueness allows us to distinguish two complex structures with Riemannian data, giving...

Isospectrality for quantum toric integrable systems

Laurent Charles, Álvaro Pelayo, San Vũ Ngoc (2013)

Annales scientifiques de l'École Normale Supérieure

We give a full description of the semiclassical spectral theory of quantum toric integrable systems using microlocal analysis for Toeplitz operators. This allows us to settle affirmatively the isospectral problem for quantum toric integrable systems: the semiclassical joint spectrum of the system, given by a sequence of commuting Toeplitz operators on a sequence of Hilbert spaces, determines the classical integrable system given by the symplectic manifold and commuting Hamiltonians. This type of...

Linearization of Poisson actions and singular values of matrix products

Anton Alekseev, Eckhard Meinrenken, Chris Woodward (2001)

Annales de l’institut Fourier

We prove that the linearization functor from the category of Hamiltonian K -actions with group-valued moment maps in the sense of Lu, to the category of ordinary Hamiltonian K - actions, preserves products up to symplectic isomorphism. As an application, we give a new proof of the Thompson conjecture on singular values of matrix products and extend this result to the case of real matrices. We give a formula for the Liouville volume of these spaces and obtain from it a hyperbolic version of the Duflo...

Normal forms of analytic perturbations of quasihomogeneous vector fields: Rigidity, invariant analytic sets and exponentially small approximation

Eric Lombardi, Laurent Stolovitch (2010)

Annales scientifiques de l'École Normale Supérieure

In this article, we study germs of holomorphic vector fields which are “higher order” perturbations of a quasihomogeneous vector field in a neighborhood of the origin of n , fixed point of the vector fields. We define a “Diophantine condition” on the quasihomogeneous initial part S which ensures that if such a perturbation of S is formally conjugate to S then it is also holomorphically conjugate to it. We study the normal form problem relatively to S . We give a condition on S that ensures that there...

Orbits of families of vector fields on subcartesian spaces

Jedrzej Śniatycki (2003)

Annales de l'Institut Fourier

Orbits of complete families of vector fields on a subcartesian space are shown to be smooth manifolds. This allows a description of the structure of the reduced phase space of a Hamiltonian system in terms of the reduced Poisson algebra. Moreover, one can give a global description of smooth geometric structures on a family of manifolds, which form a singular foliation of a subcartesian space, in terms of objects defined on the corresponding family of vector fields. Stratified...

Superintegrability and time-dependent integrals

Ondřej Kubů, Libor Šnobl (2019)

Archivum Mathematicum

While looking for additional integrals of motion of several minimally superintegrable systems in static electric and magnetic fields, we have realized that in some cases Lie point symmetries of Euler-Lagrange equations imply existence of explicitly time-dependent integrals of motion through Noether’s theorem. These integrals can be combined to get an additional time-independent integral for some values of the parameters of the considered systems, thus implying maximal superintegrability. Even for...

Superintegrable Potentials and superposition of Higgs Oscillators on the Sphere S²

Manuel F. Rañada, Teresa Sanz-Gil, Mariano Santander (2003)

Banach Center Publications

The spherical version of the two-dimensional central harmonic oscillator, as well as the spherical Kepler (Schrödinger) potential, are superintegrable systems with quadratic constants of motion. They belong to two different spherical "Smorodinski-Winternitz" families of superintegrable potentials. A new superintegrable oscillator have been recently found in S². It represents the spherical version of the nonisotropic 2:1 oscillator and it also belongs to a spherical family of quadratic superintegrable...

The degenerate C. Neumann system I: symmetry reduction and convexity

Holger Dullin, Heinz Hanßmann (2012)

Open Mathematics

The C. Neumann system describes a particle on the sphere S n under the influence of a potential that is a quadratic form. We study the case that the quadratic form has ℓ +1 distinct eigenvalues with multiplicity. Each group of m σ equal eigenvalues gives rise to an O(m σ)-symmetry in configuration space. The combined symmetry group G is a direct product of ℓ + 1 such factors, and its cotangent lift has an Ad*-equivariant momentum mapping. Regular reduction leads to the Rosochatius system on S ℓ,...

The gap phenomenon in the dimension study of finite type systems

Boris Kruglikov (2012)

Open Mathematics

Several examples of gaps (lacunes) between dimensions of maximal and submaximal symmetric models are considered, which include investigation of number of independent linear and quadratic integrals of metrics and counting the symmetries of geometric structures and differential equations. A general result clarifying this effect in the case when the structure is associated to a vector distribution, is proposed.

Currently displaying 21 – 40 of 42