Feuilletages en surfaces, cycles évanouissants et variétés de Poisson.
In this article we prove that the fibration of by potentials which are isospectral for the 1-dimensional periodic Schrödinger equation, is trivial. This result can be applied, in particular, to -gap solutions of the Korteweg-de Vries equation (KdV) on the circle: one shows that KdV, a completely integrable Hamiltonian system, has global action-angle variables.
In this paper we study topological properties of stable Hamiltonian structures. In particular, we prove the following results in dimension three: The space of stable Hamiltonian structures modulo homotopy is discrete; stable Hamiltonian structures are generically Morse-Bott (i.e. all closed orbits are Bott nondegenerate) but not Morse; the standard contact structure on is homotopic to a stable Hamiltonian structure which cannot be embedded in . Moreover, we derive a structure theorem for stable...
2000 Mathematics Subject Classification: 37J55, 53D10, 53D17, 53D35.In this paper, we study contact forms on a 3-manifold having a common Reeb vector field R. The main result is that when the contact forms induce the same orientation, they are diffeomorphic.
We study the parametrized Hamiltonian action functional for finite-dimensional families of Hamiltonians. We show that the linearized operator for the -gradient lines is Fredholm and surjective, for a generic choice of Hamiltonian and almost complex structure. We also establish the Fredholm property and transversality for generic -invariant families of Hamiltonians and almost complex structures, parametrized by odd-dimensional spheres. This is a foundational result used to define -equivariant...
The Conley-Zehnder index associates an integer to any continuous path of symplectic matrices starting from the identity and ending at a matrix which does not admit as an eigenvalue. Robbin and Salamon define a generalization of the Conley-Zehnder index for any continuous path of symplectic matrices; this generalization is half integer valued. It is based on a Maslov-type index that they define for a continuous path of Lagrangians in a symplectic vector space , having chosen a given reference...