Displaying 741 – 760 of 912

Showing per page

Systems of rays in the presence of distribution of hyperplanes

S. Janeczko (1995)

Banach Center Publications

Horizontal systems of rays arise in the study of integral curves of Hamiltonian systems v H on T*X, which are tangent to a given distribution V of hyperplanes on X. We investigate the local properties of systems of rays for general pairs (H,V) as well as for Hamiltonians H such that the corresponding Hamiltonian vector fields v H are horizontal with respect to V. As an example we explicitly calculate the space of horizontal geodesics and the corresponding systems of rays for the canonical distribution...

The action spectrum near positive definite invariant tori

Patrick Bernard (2003)

Bulletin de la Société Mathématique de France

We show that the Birkhoff normal form near a positive definite KAM torus is given by the function α of Mather. This observation is due to Siburg [Si2], [Si1] in dimension 2. It clarifies the link between the Birkhoff invariants and the action spectrum near the torus. Our extension to high dimension is made possible by a simplification of the proof given in [Si2].

The characteristic variety of a generic foliation

Jorge Vitório Pereira (2012)

Journal of the European Mathematical Society

We confirm a conjecture of Bernstein–Lunts which predicts that the characteristic variety of a generic polynomial vector field has no homogeneous involutive subvarieties besides the zero section and subvarieties of fibers over singular points.

The degenerate C. Neumann system I: symmetry reduction and convexity

Holger Dullin, Heinz Hanßmann (2012)

Open Mathematics

The C. Neumann system describes a particle on the sphere S n under the influence of a potential that is a quadratic form. We study the case that the quadratic form has ℓ +1 distinct eigenvalues with multiplicity. Each group of m σ equal eigenvalues gives rise to an O(m σ)-symmetry in configuration space. The combined symmetry group G is a direct product of ℓ + 1 such factors, and its cotangent lift has an Ad*-equivariant momentum mapping. Regular reduction leads to the Rosochatius system on S ℓ,...

The gap phenomenon in the dimension study of finite type systems

Boris Kruglikov (2012)

Open Mathematics

Several examples of gaps (lacunes) between dimensions of maximal and submaximal symmetric models are considered, which include investigation of number of independent linear and quadratic integrals of metrics and counting the symmetries of geometric structures and differential equations. A general result clarifying this effect in the case when the structure is associated to a vector distribution, is proposed.

Currently displaying 741 – 760 of 912