Topology of vortices
By disintegration of transport plans it is introduced the notion of transport class. This allows to consider the Monge problem as a particular case of the Kantorovich transport problem, once a transport class is fixed. The transport problem constrained to a fixed transport class is equivalent to an abstract Monge problem over a Wasserstein space of probability measures. Concerning solvability of this kind of constrained problems, it turns out that in some sense the Monge problem corresponds to a...
It is well-known that the existence of transversally intersecting separatrices of hyperbolic periodic solutions leads, in a typical situation, to complicated and irregular dynamics. Therefore, in the case of a two-dimensional mapping or a three-dimensional flow, with this transversality property, there is no non-trivial analytic or meromorphic first integral, i.e., a function constant along each trajectory of the system under consideration. Additional robust conditions are obtained and discussed...
Trattiamo sistemi lagrangiani su varietà, sia autonomi che periodici, e introduciamo un indice di Morse medio per misure invarianti, che generalizza l'indice medio delle orbite periodiche. Dimostriamo che, se lo spazio delle configurazioni è una varietà compatta con gruppo fondamentale finito, gli indici medi delle orbite periodiche sono densi in . Per sistemi periodici, deduciamo l'esistenza di particolari successioni di orbite chiuse, che convergono a misure invarianti di indice medio fissato....