Positive trigonometric sums and applications.
In this paper we introduce some new modified cosine sums and then using these sums we study -convergence of trigonometric cosine series.
Soit E un espace de Fréchet séparable ne contenant pas ; soit de plus une suite symétrique de vecteurs aléatoires à valeurs dans E. Alors si la série de Fourier aléatoire , , a p.s. ses sommes partielles localement uniformément bornées dans E, nécessairement elle converge p.s. uniformément sur tout compact de vers une fonction aléatoire à valeurs dans E et à trajectoires continues.
We establish two new norm convergence theorems for Henstock-Kurzweil integrals. In particular, we provide a unified approach for extending several results of R. P. Boas and P. Heywood from one-dimensional to multidimensional trigonometric series.
It is a classical problem in Fourier analysis to give conditions for a single sine or cosine series to be uniformly convergent. Several authors gave conditions for this problem supposing that the coefficients are monotone, non-negative or more recently, general monotone. There are also results for the regular convergence of double sine series to be uniform in case the coefficients are monotone or general monotone double sequences. In this paper we give new sufficient conditions for the uniformity...
Let with for all j,k ≥ 1. We estimate the integral in terms of the coefficients , where α, β ∈ ℝ and ϕ: [0,∞] → [0,∞]. Our results can be regarded as the trigonometric analogues of those of Mazhar and Móricz [MM]. They generalize and extend Boas [B, Theorem 6.7].