Convergence of new modified trigonometric sums in the metric space .
We establish a connection between the L² norm of sums of dilated functions whose jth Fourier coefficients are for some α ∈ (1/2,1), and the spectral norms of certain greatest common divisor (GCD) matrices. Utilizing recent bounds for these spectral norms, we obtain sharp conditions for the convergence in L² and for the almost everywhere convergence of series of dilated functions.
Let X be a rearrangement-invariant space of Lebesgue-measurable functions on , such as the classical Lebesgue, Lorentz or Orlicz spaces. Given a nonnegative, measurable (weight) function on , define . We investigate conditions on such a weight w that guarantee X(w) is an algebra under the convolution product F∗G defined at by ; more precisely, when for all F,G ∈ X(w).
Two important examples of q-deformed commutativity relations are: aa* - qa*a = 1, studied in particular by M. Bożejko and R. Speicher, and ab = qba, studied by T. H. Koornwinder and S. Majid. The second case includes the q-normality of operators, defined by S. Ôta (aa* = qa*a). These two frameworks give rise to different convolutions. In particular, in the second scheme, G. Carnovale and T. H. Koornwinder studied their q-convolution. In the present paper we consider another convolution of measures...
Proposition 4.1(i) of [1] is incorrect, i.e. the sequence of Cesàro-sections of a sequence x in a translation invariant BK-space is not necessarily bounded. Theorem 4.2(ii) of [1] and the proof of Proposition 4.3 of [1] are corrected. All other statements of [1], including Proposition 4.3 itself, are correct.
In a recent paper [3] C. Baiocchi, V. Komornik and P. Loreti obtained a generalisation of Parseval's identity by means of divided differences. We give here a proof of the optimality of that theorem.