Displaying 301 – 320 of 1346

Showing per page

Divergence of general operators on sets of measure zero

G. A. Karagulyan (2010)

Colloquium Mathematicae

We consider sequences of linear operators Uₙ with a localization property. It is proved that for any set E of measure zero there exists a set G for which U G ( x ) diverges at each point x ∈ E. This result is a generalization of analogous theorems known for the Fourier sum operators with respect to different orthogonal systems.

Double sine series with nonnegative coefficients and Lipschitz classes

Vanda Fülöp (2006)

Colloquium Mathematicae

Denote by f s s ( x , y ) the sum of a double sine series with nonnegative coefficients. We present necessary and sufficient coefficient conditions in order that f s s belongs to the two-dimensional multiplicative Lipschitz class Lip(α,β) for some 0 < α ≤ 1 and 0 < β ≤ 1. Our theorems are extensions of the corresponding theorems by Boas for single sine series.

Duality properties and Riesz representation theorem in Besicovitch-Musielak-Orlicz space of almost periodic functions

A. Daoui, Mohamed Morsli, M. Smaali (2012)

Commentationes Mathematicae Universitatis Carolinae

This paper is an extension of the work done in [Morsli M., Bedouhene F., Boulahia F., Duality properties and Riesz representation theorem in the Besicovitch-Orlicz space of almost periodic functions, Comment. Math. Univ. Carolin. 43 (2002), no. 1, 103--117] to the Besicovitch-Musielak-Orlicz space of almost periodic functions. Necessary and sufficient conditions for the reflexivity of this space are given. A Riesz type ``duality representation theorem'' is also stated.

Duality properties and Riesz representation theorem in the Besicovitch-Orlicz space of almost periodic functions

Mohamed Morsli, Fazia Bedouhene, Fatiha Boulahia (2002)

Commentationes Mathematicae Universitatis Carolinae

In [6], the classical Riesz representation theorem is extended to the class of Besicovitch space of almost periodic functions B q  a.p., q ] 1 , + [ . It is also shown that this space is reflexive. We shall consider here such results in the context of Orlicz spaces, namely in the class of Besicovitch-Orlicz space of almost periodic functions B φ  a.p., where φ is an Orlicz function.

Efficient computation of delay differential equations with highly oscillatory terms

Marissa Condon, Alfredo Deaño, Arieh Iserles, Karolina Kropielnicka (2012)

ESAIM: Mathematical Modelling and Numerical Analysis - Modélisation Mathématique et Analyse Numérique

This paper is concerned with the asymptotic expansion and numerical solution of systems of linear delay differential equations with highly oscillatory forcing terms. The computation of such problems using standard numerical methods is exceedingly slow and inefficient, indeed standard software is practically useless for this purpose. We propose an alternative, consisting of an asymptotic expansion of the solution, where each term can be derived either by recursion or by solving a non-oscillatory...

Efficient computation of delay differential equations with highly oscillatory terms

Marissa Condon, Alfredo Deaño, Arieh Iserles, Karolina Kropielnicka (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the asymptotic expansion and numerical solution of systems of linear delay differential equations with highly oscillatory forcing terms. The computation of such problems using standard numerical methods is exceedingly slow and inefficient, indeed standard software is practically useless for this purpose. We propose an alternative, consisting of an asymptotic expansion of the solution, where each term can be derived either by recursion or by solving a non-oscillatory...

Efficient computation of delay differential equations with highly oscillatory terms

Marissa Condon, Alfredo Deaño, Arieh Iserles, Karolina Kropielnicka (2012)

ESAIM: Mathematical Modelling and Numerical Analysis

This paper is concerned with the asymptotic expansion and numerical solution of systems of linear delay differential equations with highly oscillatory forcing terms. The computation of such problems using standard numerical methods is exceedingly slow and inefficient, indeed standard software is practically useless for this purpose. We propose an alternative, consisting of an asymptotic expansion of the solution, where each term can be derived either by recursion or by solving a non-oscillatory...

Endpoint multiplier theorems of Marcinkiewicz type.

Terence Tao, James Wright (2001)

Revista Matemática Iberoamericana

We establish sharp (H1,L1,q) and local (L logrL,L1,q) mapping properties for rough one-dimensional multipliers. In particular, we show that the multipliers in the Marcinkiewicz multiplier theorem map H1 to L1,∞ and L log1/2L to L1,∞, and that these estimates are sharp.

Energy of measures on compact Riemannian manifolds

Kathryn E. Hare, Maria Roginskaya (2003)

Studia Mathematica

We investigate the energy of measures (both positive and signed) on compact Riemannian manifolds. A formula is given relating the energy integral of a positive measure with the projections of the measure onto the eigenspaces of the Laplacian. This formula is analogous to the classical formula comparing the energy of a measure in Euclidean space with a weighted L² norm of its Fourier transform. We show that the boundedness of a modified energy integral for signed measures gives bounds on the Hausdorff...

Currently displaying 301 – 320 of 1346