Displaying 21 – 40 of 45

Showing per page

Une nouvelle propriété des suites de Rudin-Shapiro

Martine Queffelec (1987)

Annales de l'institut Fourier

Les suites de Rudin-Shapiro ont des propriétés extrémales en analyse harmonique. En remarquant qu’une telle suite est reconnaissable par un automate fini, nous en décrivons explicitement le spectre (type spectral maximal, multiplicité spectrale fonction multiplicité). Nous établissons par exemple, que la suite de Rudin-Shapiro généralisée à l’ordre q contient dans son spectre une composante de Lebesgue, de multiplicité q φ ( q ) .

Uniform convergence of double trigonometric series

Chang-Pao Chen, Gwo-Bin Chen (1996)

Studia Mathematica

It is shown that under certain conditions on c j k , the rectangular partial sums s m n ( x , y ) converge uniformly on T 2 . These conditions include conditions of bounded variation of order (1,0), (0,1), and (1,1) with the weights |j|, |k|, |jk|, respectively. The convergence rate is also established. Corresponding to the mentioned conditions, an analogous condition for single trigonometric series is | k | = n | Δ c k | = o ( 1 / n ) (as n → ∞). For O-regularly varying quasimonotone sequences, we prove that it is equivalent to the condition: n c n = o ( 1 ) as...

Uniform convergence of double trigonometric series

Péter Kórus (2013)

Mathematica Bohemica

It is a classical problem in Fourier analysis to give conditions for a single sine or cosine series to be uniformly convergent. Several authors gave conditions for this problem supposing that the coefficients are monotone, non-negative or more recently, general monotone. There are also results for the regular convergence of double sine series to be uniform in case the coefficients are monotone or general monotone double sequences. In this paper we give new sufficient conditions for the uniformity...

Currently displaying 21 – 40 of 45