A strong version of Poisson summation.
Let W be an operator weight taking values almost everywhere in the bounded positive invertible linear operators on a separable Hilbert space . We show that if W and its inverse both satisfy a matrix reverse Hölder property introduced by Christ and Goldberg, then the weighted Hilbert transform and also all weighted dyadic martingale transforms are bounded. We also show that this condition is not necessary for the boundedness of the weighted Hilbert transform.
This is a survey of results in a particular direction of the theory of strong approximation by orthogonal series, related mostly with author's contributions to the subject.
The well-known general Tauberian theorem of N. Wiener is formulated and proved for distributions in the place of functions and its Ganelius' formulation is corrected. Some changes of assumptions of this theorem are discussed, too.
There is a one parameter family of bilinear Hilbert transforms. Recently, some progress has been made to prove Lp estimates for these operators uniformly in the parameter. In the current article we present some of these techniques in a simplified model...
We strengthen the Carleson-Hunt theorem by proving estimates for the -variation of the partial sum operators for Fourier series and integrals, for . Four appendices are concerned with transference, a variation norm Menshov-Paley-Zygmund theorem, and applications to nonlinear Fourier transforms and ergodic theory.
Various new sufficient conditions for representation of a function of several variables as an absolutely convergent Fourier integral are obtained. The results are given in terms of integrability of the function and its partial derivatives, each with a different p. These p are subject to certain relations known earlier only for some particular cases. Sharpness and applications of the results obtained are also discussed.
Four theorems of Ahmad [1] on absolute Nörlund summability factors of power series and Fourier series are proved under weaker conditions.