Displaying 81 – 100 of 181

Showing per page

A Tauberian theorem for distributions

Jiří Čížek, Jiří Jelínek (1996)

Commentationes Mathematicae Universitatis Carolinae

The well-known general Tauberian theorem of N. Wiener is formulated and proved for distributions in the place of functions and its Ganelius' formulation is corrected. Some changes of assumptions of this theorem are discussed, too.

A uniform estimate for quartile operators.

Christoph Thiele (2002)

Revista Matemática Iberoamericana

There is a one parameter family of bilinear Hilbert transforms. Recently, some progress has been made to prove Lp estimates for these operators uniformly in the parameter. In the current article we present some of these techniques in a simplified model...

A variation norm Carleson theorem

Richard Oberlin, Andreas Seeger, Terence Tao, Christoph Thiele, James Wright (2012)

Journal of the European Mathematical Society

We strengthen the Carleson-Hunt theorem by proving L p estimates for the r -variation of the partial sum operators for Fourier series and integrals, for r > 𝚖𝚊𝚡 { p ' , 2 } . Four appendices are concerned with transference, a variation norm Menshov-Paley-Zygmund theorem, and applications to nonlinear Fourier transforms and ergodic theory.

Absolute convergence of multiple Fourier integrals

Yurii Kolomoitsev, Elijah Liflyand (2013)

Studia Mathematica

Various new sufficient conditions for representation of a function of several variables as an absolutely convergent Fourier integral are obtained. The results are given in terms of L p integrability of the function and its partial derivatives, each with a different p. These p are subject to certain relations known earlier only for some particular cases. Sharpness and applications of the results obtained are also discussed.

Absolutely convergent Fourier series and generalized Lipschitz classes of functions

Ferenc Móricz (2008)

Colloquium Mathematicae

We investigate the order of magnitude of the modulus of continuity of a function f with absolutely convergent Fourier series. We give sufficient conditions in terms of the Fourier coefficients in order that f belong to one of the generalized Lipschitz classes Lip(α,L) and Lip(α,1/L), where 0 ≤ α ≤ 1 and L = L(x) is a positive, nondecreasing, slowly varying function such that L(x) → ∞ as x → ∞. For example, a 2π-periodic function f is said to belong to the class Lip(α,L) if | f ( x + h ) - f ( x ) | C h α L ( 1 / h ) for all x ∈ , h >...

Accelerating the convergence of trigonometric series

Anry Nersessian, Arnak Poghosyan (2006)

Open Mathematics

A nonlinear method of accelerating both the convergence of Fourier series and trigonometric interpolation is investigated. Asymptotic estimates of errors are derived for smooth functions. Numerical results are represented and discussed.

Currently displaying 81 – 100 of 181