Displaying 181 – 200 of 211

Showing per page

The wavelet characterization of the space Weak H¹

Heping Liu (1992)

Studia Mathematica

The space Weak H¹ was introduced and investigated by Fefferman and Soria. In this paper we characterize it in terms of wavelets. Equivalence of four conditions is proved.

The weighted Hardy spaces associated to self-adjoint operators and their duality on product spaces

Suying Liu, Minghua Yang (2018)

Czechoslovak Mathematical Journal

Let L be a non-negative self-adjoint operator acting on L 2 ( n ) satisfying a pointwise Gaussian estimate for its heat kernel. Let w be an A r weight on n × n , 1 < r < . In this article we obtain a weighted atomic decomposition for the weighted Hardy space H L , w p ( n × n ) , 0 < p 1 associated to L . Based on the atomic decomposition, we show the dual relationship between H L , w 1 ( n × n ) and BMO L , w ( n × n ) .

Traces and the F. and M. Riesz theorem for vector fields

Shiferaw Berhanu, Jorge Hounie (2003)

Annales de l’institut Fourier

This work studies conditions that insure the existence of weak boundary values for solutions of a complex, planar, smooth vector field L . Applications to the F. and M. Riesz property for vector fields are discussed.

Transference and restriction of maximal multiplier operators on Hardy spaces

Zhixin Liu, Shanzhen Lu (1993)

Studia Mathematica

The aim of this paper is to establish transference and restriction theorems for maximal operators defined by multipliers on the Hardy spaces H p ( n ) and H p ( n ) , 0 < p ≤ 1, which generalize the results of Kenig-Tomas for the case p > 1. We prove that under a mild regulation condition, an L ( n ) function m is a maximal multiplier on H p ( n ) if and only if it is a maximal multiplier on H p ( n ) . As an application, the restriction of maximal multipliers to lower dimensional Hardy spaces is considered.

Transference theory onHardy and Sobolev spaces

Maria Carro, Javier Soria (1997)

Colloquium Mathematicae

We show that the transference method of Coifman and Weiss can be extended to Hardy and Sobolev spaces. As an application we obtain the de Leeuw restriction theorems for multipliers.

Two-parameter Hardy-Littlewood inequalities

Ferenc Weisz (1996)

Studia Mathematica

The inequality (*) ( | n | = 1 | m | = 1 | n m | p - 2 | f ̂ ( n , m ) | p ) 1 / p C p ƒ H p (0 < p ≤ 2) is proved for two-parameter trigonometric-Fourier coefficients and for the two-dimensional classical Hardy space H p on the bidisc. The inequality (*) is extended to each p if the Fourier coefficients are monotone. For monotone coefficients and for every p, the supremum of the partial sums of the Fourier series is in L p whenever the left hand side of (*) is finite. From this it follows that under the same condition the two-dimensional trigonometric-Fourier series...

Vector valued inequalities for strongly singular Calderón-Zygmund operators.

Josefina Alvarez, Mario Milman (1986)

Revista Matemática Iberoamericana

In this article we consider a theory of vector valued strongly singular operators. Our results include Lp, Hp and BMO continuity results. Moreover, as is well known, vector valued estimates are closely related to weighted norm inequalities. These results are developed in the first four sections of our paper. In section 5 we use our vector valued singular integrals to estimate the corresponding maximal operators. Finally in section 6 we discuss applications to weighted norm inequalities for pseudo-differential...

Vector-valued wavelets and the Hardy space H¹(ℝⁿ,X)

Tuomas Hytönen (2006)

Studia Mathematica

We prove an analogue of Y. Meyer's wavelet characterization of the Hardy space H¹(ℝⁿ) for the space H¹(ℝⁿ,X) of X-valued functions. Here X is a Banach space with the UMD property. The proof uses results of T. Figiel on generalized Calderón-Zygmund operators on Bochner spaces and some new local estimates.

Walsh-Marcinkiewicz means and Hardy spaces

Károly Nagy, George Tephnadze (2014)

Open Mathematics

The main aim of this paper is to investigate the Walsh-Marcinkiewicz means on the Hardy space H p, when 0 < p < 2/3. We define a weighted maximal operator of Walsh-Marcinkiewicz means and establish some of its properties. With its aid we provide a necessary and sufficient condition for convergence of the Walsh-Marcinkiewicz means in terms of modulus of continuity on the Hardy space H p, and prove a strong convergence theorem for the Walsh-Marcinkiewicz means.

Weighted estimates for commutators of linear operators

Josefina Alvarez, Richard Bagby, Douglas Kurtz, Carlos Pérez (1993)

Studia Mathematica

We study boundedness properties of commutators of general linear operators with real-valued BMO functions on weighted L p spaces. We then derive applications to particular important operators, such as Calderón-Zygmund type operators, pseudo-differential operators, multipliers, rough singular integrals and maximal type operators.

Weighted estimates for commutators of multilinear Hausdorff operators on variable exponent Morrey-Herz type spaces

Dao Van Duong, Kieu Huu Dung, Nguyen Minh Chuong (2020)

Czechoslovak Mathematical Journal

We establish the boundedness for the commutators of multilinear Hausdorff operators on the product of some weighted Morrey-Herz type spaces with variable exponent with their symbols belonging to both Lipschitz space and central BMO space. By these, we generalize and strengthen some previously known results.

Currently displaying 181 – 200 of 211