Displaying 281 – 300 of 1022

Showing per page

Fejér–Riesz factorizations and the structure of bivariate polynomials orthogonal on the bi-circle

Jeffrey S. Geronimo, Plamen Iliev (2014)

Journal of the European Mathematical Society

We give a complete characterization of the positive trigonometric polynomials Q ( θ , ϕ ) on the bi-circle, which can be factored as Q ( θ , ϕ ) = | p ( e i θ , e i ϕ ) | 2 where p ( z , w ) is a polynomial nonzero for | z | = 1 and | w | 1 . The conditions are in terms of recurrence coefficients associated with the polynomials in lexicographical and reverse lexicographical ordering orthogonal with respect to the weight 1 4 π 2 Q ( θ , ϕ ) on the bi-circle. We use this result to describe how specific factorizations of weights on the bi-circle can be translated into identities relating...

FKN Theorem on the biased cube

Piotr Nayar (2014)

Colloquium Mathematicae

We consider Boolean functions defined on the discrete cube - γ , γ - 1 equipped with a product probability measure μ n , where μ = β δ - γ + α δ γ - 1 and γ = √(α/β). This normalization ensures that the coordinate functions ( x i ) i = 1 , . . . , n are orthonormal in L ( - γ , γ - 1 , μ n ) . We prove that if the spectrum of a Boolean function is concentrated on the first two Fourier levels, then the function is close to a certain function of one variable. Our theorem strengthens the non-symmetric FKN Theorem due to Jendrej, Oleszkiewicz and Wojtaszczyk. Moreover, in the symmetric...

Fonctions a support compact dans les analyses multi-résolutions.

Pierre Gilles Lemarié-Rieusset (1991)

Revista Matemática Iberoamericana

The main topic of this paper is the study of compactly supported functions in a multi-resolution analysis and especially of the minimally supported ones. We will show that this class of functions is stable under differentiation and integration and how to compute basic quantities with them.

Fourier approach to homogenization problems

Carlos Conca, M. Vanninathan (2002)

ESAIM: Control, Optimisation and Calculus of Variations

This article is divided into two chapters. The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in the first chapter. Following a Fourier approach, we discuss some of the basic issues of the subject: main convergence theorem, Bloch approximation, estimates on second order derivatives, correctors for the medium, and so on. The second chapter is devoted to the discussion of some non-classical behaviour of vibration problems of periodic...

Fourier approach to homogenization problems

Carlos Conca, M. Vanninathan (2010)

ESAIM: Control, Optimisation and Calculus of Variations

This article is divided into two chapters. The classical problem of homogenization of elliptic operators with periodically oscillating coefficients is revisited in the first chapter. Following a Fourier approach, we discuss some of the basic issues of the subject: main convergence theorem, Bloch approximation, estimates on second order derivatives, correctors for the medium, and so on. The second chapter is devoted to the discussion of some non-classical behaviour of vibration problems of periodic...

Fourier inversion of distributions on projective spaces

Francisco Javier González Vieli (2006)

Commentationes Mathematicae Universitatis Carolinae

We show that the Fourier-Laplace series of a distribution on the real, complex or quarternionic projective space is uniformly Cesàro-summable to zero on a neighbourhood of a point if and only if this point does not belong to the support of the distribution.

Currently displaying 281 – 300 of 1022