Displaying 41 – 60 of 98

Showing per page

Homomorphisms of commutative Banach algebras and extensions to multiplier algebras with applications to Fourier algebras

E. Kaniuth, A. T. Lau, A. Ülger (2007)

Studia Mathematica

Let A and B be semisimple commutative Banach algebras with bounded approximate identities. We investigate the problem of extending a homomorphism φ: A → B to a homomorphism of the multiplier algebras M(A) and M(B) of A and B, respectively. Various sufficient conditions in terms of B (or B and φ) are given that allow the construction of such extensions. We exhibit a number of classes of Banach algebras to which these criteria apply. In addition, we prove a polar decomposition for homomorphisms from...

Hull-minimal ideals in the Schwartz algebra of the Heisenberg group

J. Ludwig (1998)

Studia Mathematica

For every closed subset C in the dual space Ĥ n of the Heisenberg group H n we describe via the Fourier transform the elements of the hull-minimal ideal j(C) of the Schwartz algebra S ( H n ) and we show that in general for two closed subsets C 1 , C 2 of Ĥ n the product of j ( C 1 ) and j ( C 2 ) is different from j ( C 1 C 2 ) .

Inductive extreme non-Arens regularity of the Fourier algebra A(G)

Zhiguo Hu (2002)

Studia Mathematica

Let G be a non-discrete locally compact group, A(G) the Fourier algebra of G, VN(G) the von Neumann algebra generated by the left regular representation of G which is identified with A(G)*, and WAP(Ĝ) the space of all weakly almost periodic functionals on A(G). We show that there exists a directed family ℋ of open subgroups of G such that: (1) for each H ∈ ℋ, A(H) is extremely non-Arens regular; (2) V N ( G ) = H V N ( H ) and V N ( G ) / W A P ( G ̂ ) = H [ V N ( H ) / W A P ( H ̂ ) ] ; (3) A ( G ) = H A ( H ) and it is a WAP-strong inductive union in the sense that the unions in (2) are strongly...

Invariant means on a class of von Neumann algebras related to ultraspherical hypergroups

Nageswaran Shravan Kumar (2014)

Studia Mathematica

Let K be an ultraspherical hypergroup associated to a locally compact group G and a spherical projector π and let VN(K) denote the dual of the Fourier algebra A(K) corresponding to K. In this note, invariant means on VN(K) are defined and studied. We show that the set of invariant means on VN(K) is nonempty. Also, we prove that, if H is an open subhypergroup of K, then the number of invariant means on VN(H) is equal to the number of invariant means on VN(K). We also show that a unique topological...

Lp multipliers and their H1-L1 estimates on the Heisenberg group.

Chin-Cheng Lin (1995)

Revista Matemática Iberoamericana

We give a Hörmander-type sufficient condition on an operator-valued function M that implies the Lp-boundedness result for the operator TM defined by (TMf)^ = Mf^ on the (2n + 1)-dimensional Heisenberg group Hn. Here ^ denotes the Fourier transform on Hn defined in terms of the Fock representations. We also show the H1-L1 boundedness of TM, ||TMf||L1 ≤ C||f||H1, for Hn under the same hypotheses of Lp-boundedness.

Module maps over locally compact quantum groups

Zhiguo Hu, Matthias Neufang, Zhong-Jin Ruan (2012)

Studia Mathematica

We study locally compact quantum groups and their module maps through a general Banach algebra approach. As applications, we obtain various characterizations of compactness and discreteness, which in particular generalize a result by Lau (1978) and recover another one by Runde (2008). Properties of module maps on L ( ) are used to characterize strong Arens irregularity of L₁() and are linked to commutation relations over with several double commutant theorems established. We prove the quantum group...

On Besov spaces and absolute convergence of the Fourier transform on Heisenberg groups

Leszek Skrzypczak (1998)

Commentationes Mathematicae Universitatis Carolinae

In this paper the absolute convergence of the group Fourier transform for the Heisenberg group is investigated. It is proved that the Fourier transform of functions belonging to certain Besov spaces is absolutely convergent. The function spaces are defined in terms of the heat semigroup of the full Laplacian of the Heisenberg group.

On character amenable Banach algebras

Z. Hu, M. Sangani Monfared, T. Traynor (2009)

Studia Mathematica

We obtain characterizations of left character amenable Banach algebras in terms of the existence of left ϕ-approximate diagonals and left ϕ-virtual diagonals. We introduce the left character amenability constant and find this constant for some Banach algebras. For all locally compact groups G, we show that the Fourier-Stieltjes algebra B(G) is C-character amenable with C < 2 if and only if G is compact. We prove that if A is a character amenable, reflexive, commutative Banach algebra, then A...

On convolution operators with small support which are far from being convolution by a bounded measure

Edmond Granirer (1994)

Colloquium Mathematicae

Let C V p ( F ) be the left convolution operators on L p ( G ) with support included in F and M p ( F ) denote those which are norm limits of convolution by bounded measures in M(F). Conditions on F are given which insure that C V p ( F ) , C V p ( F ) / M p ( F ) and C V p ( F ) / W are as big as they can be, namely have l as a quotient, where the ergodic space W contains, and at times is very big relative to M p ( F ) . Other subspaces of C V p ( F ) are considered. These improve results of Cowling and Fournier, Price and Edwards, Lust-Piquard, and others.

Currently displaying 41 – 60 of 98