Displaying 2221 – 2240 of 2683

Showing per page

The Poulsen simplex

Joram Lindenstrauss, Gunnar Olsen, Y. Sternfeld (1978)

Annales de l'institut Fourier

It is proved that there is a unique metrizable simplex S whose extreme points are dense. This simplex is homogeneous in the sense that for every 2 affinely homeomorphic faces F 1 and F 2 there is an automorphism of S which maps F 1 onto F 2 . Every metrizable simplex is affinely homeomorphic to a face of S . The set of extreme points of S is homeomorphic to the Hilbert space 2 . The matrices which represent A ( S ) are characterized.

The projective limit functor for spectra of webbed spaces

L. Frerick, D. Kunkle, J. Wengenroth (2003)

Studia Mathematica

We study Palamodov's derived projective limit functor Proj¹ for projective spectra consisting of webbed locally convex spaces introduced by Wilde. This class contains almost all locally convex spaces appearing in analysis. We provide a natural characterization for the vanishing of Proj¹ which generalizes and unifies results of Palamodov and Retakh for spectra of Fréchet and (LB)-spaces. We thus obtain a general tool for solving surjectivity problems in analysis.

The simplex of tracial quantum symmetric states

Yoann Dabrowski, Kenneth J. Dykema, Kunal Mukherjee (2014)

Studia Mathematica

We show that the space of tracial quantum symmetric states of an arbitrary unital C*-algebra is a Choquet simplex and is a face of the tracial state space of the universal unital C*-algebra free product of A with itself infinitely many times. We also show that the extreme points of this simplex are dense, making it the Poulsen simplex when A is separable and nontrivial. In the course of the proof we characterize the centers of certain tracial amalgamated free product C*-algebras.

The space D ( U ) is not B r -complete

Manuel Valdivia (1977)

Annales de l'institut Fourier

Certain classes of locally convex space having non complete separated quotients are studied and consequently results about B r -completeness are obtained. In particular the space of L. Schwartz D ( Ω ) is not B r -complete where Ω denotes a non-empty open set of the euclidean space R m .

Currently displaying 2221 – 2240 of 2683