Absolutely continuous selections from absolutely continuous set valued map
If is an increasing sequence of absolutely convex sets, in a barrelled space , such that , it is deduced some properties of from the properties of the sets of . It is shown that in a barrelled space any subspace of infinite countable codimension, is barrelled.
Sufficient and necessary conditions are presented under which two given functions can be separated by a function Π-affine in Rodé sense (resp. Π-convex, Π-concave). As special cases several old and new separation theorems are obtained.
We provide new characterizations of acyclic inductive spectra of Fréchet spaces which improve the classical theorem of Palamodov and Retakh. It turns out that acyclicity, sequential retractivity (defined by Floret) and further strong regularity conditions (introduced e.g. by Bierstedt and Meise) are all equivalent. This solves a problem that was folklore since around 1970. For inductive limits of Fréchet-Montel spaces we obtain even stronger results, in particular, Grothendieck's problem whether...
There is a nontrivial gap in the proof of Theorem 5.2 of [2] which is one of the main results of that paper and has been applied three times (cf. [2, Theorem 5.3, (G) in Section 6, Theorem 6.4]). Till now neither the gap has been closed nor a counterexample found. The aim of this paper is to give, by means of some general results, a better understanding of the gap. The proofs that the applications hold will be given elsewhere.
For a given bi-continuous semigroup on a Banach space we define its adjoint on an appropriate closed subspace of the norm dual . Under some abstract conditions this adjoint semigroup is again bi-continuous with respect to the weak topology . We give the following application: For a Polish space we consider operator semigroups on the space of bounded, continuous functions (endowed with the compact-open topology) and on the space of bounded Baire measures (endowed with the weak-topology)....
We construct a metrizable simplex X such that for each n ɛ ℕ there exists a bounded function f on ext X of Baire class n that cannot be extended to a strongly affine function of Baire class n. We show that such an example cannot be constructed via the space of harmonic functions.