Vektorwertige Distributionen als Randverteilungen holomorpher Funktionen.
We study polar locally convex spaces over a non-archimedean non-trivially valued complete field with a weak topological basis. We prove two completeness theorems and a Hahn-Banach type theorem for locally convex spaces with a weak Schauder basis.
For a finite and positive measure space Ω,∑,μ characterizations of weak Cauchy sequences in , the space of μ-essentially bounded vector-valued functions f:Ω → X, are presented. The fine distinction between Asplund and conditionally weakly compact subsets of is discussed.
In this note we present necessary and sufficient conditions characterizing conditionally weakly compact sets in the space of (bounded linear) operator valued measures . This generalizes a recent result of the author characterizing conditionally weakly compact subsets of the space of nuclear operator valued measures . This result has interesting applications in optimization and control theory as illustrated by several examples.
Every weakly countably compact closed convex set in a locally convex space has the quasi-weak drop property.
It is proved that a Köthe sequence space is weakly orthogonal if and only if it is order continuous. Criteria for weak property () in Orlicz sequence spaces in the case of the Luxemburg norm as well as the Orlicz norm are given.