Displaying 21 – 40 of 74

Showing per page

Fixed point theorems for nonexpansive mappings in modular spaces

Poom Kumam (2004)

Archivum Mathematicum

In this paper, we extend several concepts from geometry of Banach spaces to modular spaces. With a careful generalization, we can cover all corresponding results in the former setting. Main result we prove says that if ρ is a convex, ρ -complete modular space satisfying the Fatou property and ρ r -uniformly convex for all r > 0 , C a convex, ρ -closed, ρ -bounded subset of X ρ , T : C C a ρ -nonexpansive mapping, then T has a fixed point.

Currently displaying 21 – 40 of 74