Finite families of -spaces and multirectangular characteristics.
In this paper, we extend several concepts from geometry of Banach spaces to modular spaces. With a careful generalization, we can cover all corresponding results in the former setting. Main result we prove says that if is a convex, -complete modular space satisfying the Fatou property and -uniformly convex for all , C a convex, -closed, -bounded subset of , a -nonexpansive mapping, then has a fixed point.