Flows in infinite networks
Il est démontré que l’espace des fonctions holomorphes sur un sous-espace homogène , au sens de Katznelson, de muni de la topologie engendrée par les semi-normes portées par les compacts de , est bornologique.
Let K be a compact Hausdorff space, the space of continuous functions on K endowed with the pointwise convergence topology, D ⊂ K a dense subset and the topology in C(K) of pointwise convergence on D. It is proved that when is Lindelöf the -compact subsets of C(K) are fragmented by the supremum norm of C(K). As a consequence we obtain some Namioka type results and apply them to prove that if K is separable and is Lindelöf, then K is metrizable if, and only if, there is a countable and dense...
We prove that if a Banach space X admits a Lipschitz β-smooth bump function, then (X ∗ , weak ∗ ) is fragmented by a metric, generating a topology, which is stronger than the τβ -topology. We also use this to prove that if X ∗ admits a Lipschitz Gateaux-smooth bump function, then X is sigma-fragmentable.
Starting with a continuous injection I: X → Y between Banach spaces, we are interested in the Fréchet (non Banach) space obtained as the reduced projective limit of the real interpolation spaces. We study relationships among the pertenence of I to an operator ideal and the pertenence of the given interpolation space to the Grothendieck class generated by that ideal.
We characterize all Fréchet quotients of the space (Ω) of (complex-valued) real-analytic functions on an arbitrary open set . We also characterize those Fréchet spaces E such that every short exact sequence of the form 0 → E → X → (Ω) → 0 splits.
Fréchet spaces of strongly, weakly and weak*-continuous Fréchet space valued functions are considered. Complete solutions are given to the problems of their injectivity or embeddability as complemented subspaces in dual Fréchet spaces.