Displaying 661 – 680 of 2679

Showing per page

Egoroff, σ, and convergence properties in some archimedean vector lattices

A. W. Hager, J. van Mill (2015)

Studia Mathematica

An archimedean vector lattice A might have the following properties: (1) the sigma property (σ): For each a n c o n A there are λ n ( 0 , ) and a ∈ A with λₙaₙ ≤ a for each n; (2) order convergence and relative uniform convergence are equivalent, denoted (OC ⇒ RUC): if aₙ ↓ 0 then aₙ → 0 r.u. The conjunction of these two is called strongly Egoroff. We consider vector lattices of the form D(X) (all extended real continuous functions on the compact space X) showing that (σ) and (OC ⇒ RUC) are equivalent, and equivalent...

Egoroff's Theorem

Noboru Endou, Yasunari Shidama, Keiko Narita (2008)

Formalized Mathematics

The goal of this article is to prove Egoroff's Theorem [13]. However, there are not enough theorems related to sequence of measurable functions in Mizar Mathematical Library. So we proved many theorems about them. At the end of this article, we showed Egoroff's theorem.MML identifier: MESFUNC8, version: 7.8.10 4.100.1011

Currently displaying 661 – 680 of 2679