Displaying 761 – 780 of 2679

Showing per page

Exhaustivity in Topological Riesz Spaces with the Principal Projection Property

Kimberly Muller (2006)

Bulletin of the Polish Academy of Sciences. Mathematics

Exhaustive and uniformly exhaustive elements are studied in the setting of locally solid topological Riesz spaces with the principal projection property. We study the structure of the order interval [0,x] when x is an exhaustive element and the structure of the solid hull of a set of uniformly exhaustive elements.

Existence and integral representation of regular extensions of measures

Werner Rinkewitz (2001)

Colloquium Mathematicae

Let ℒ be a δ-lattice in a set X, and let ν be a measure on a sub-σ-algebra of σ(ℒ). It is shown that ν extends to an ℒ-regular measure on σ(ℒ) provided ν*|ℒ is σ-smooth at ∅ and ν*(L) = inf ν*(U)|X ∖ U ∈ ℒ, Usupset L for all L ∈ ℒ. Moreover, a Choquet type representation theorem is proved for the set of all such extensions.

Extension and splitting theorems for Fréchet spaces of type 2.

A. Defant, P. Domanski, M. Mastylo (1999)

Revista Matemática Complutense

We prove the following common generalization of Maurey's extension theorem and Vogt's (DN)-(Omega) splitting theorem for Fréchet spaces: if T is an operator from a subspace E of a Fréchet space G of type 2 to a Fréchet space F of dual type 2, then T extends to a map from G into F'' whenever G/E satisfies (DN) and F satisfies (Omega).

Extension maps in ultradifferentiable and ultraholomorphic function spaces

Jean Schmets, Manuel Valdivia (2000)

Studia Mathematica

The problem of the existence of extension maps from 0 to ℝ in the setting of the classical ultradifferentiable function spaces has been solved by Petzsche [9] by proving a generalization of the Borel and Mityagin theorems for C -spaces. We get a Ritt type improvement, i.e. from 0 to sectors of the Riemann surface of the function log for spaces of ultraholomorphic functions, by first establishing a generalization to some nonclassical ultradifferentiable function spaces.

Extension of vector-valued holomorphic and harmonic functions

José Bonet, Leonhard Frerick, Enrique Jordá (2007)

Studia Mathematica

We present a unified approach to the study of extensions of vector-valued holomorphic or harmonic functions based on the existence of weak or weak*-holomorphic or harmonic extensions. Several recent results due to Arendt, Nikolski, Bierstedt, Holtmanns and Grosse-Erdmann are extended. An open problem by Grosse-Erdmann is solved in the negative. Using the extension results we prove existence of Wolff type representations for the duals of certain function spaces.

Extensions of convex functionals on convex cones

E. Ignaczak, A. Paszkiewicz (1998)

Applicationes Mathematicae

We prove that under some topological assumptions (e.g. if M has nonempty interior in X), a convex cone M in a linear topological space X is a linear subspace if and only if each convex functional on M has a convex extension on the whole space X.

Currently displaying 761 – 780 of 2679