K-Convergence And The Orlicz-Pettis Theorem
We study those Köthe coechelon sequence spaces , 1 ≤ p ≤ ∞ or p = 0, which are locally convex (Riesz) algebras for pointwise multiplication. We characterize in terms of the matrix V = (vₙ)ₙ when an algebra is unital, locally m-convex, a -algebra, has a continuous (quasi)-inverse, all entire functions act on it or some transcendental entire functions act on it. It is proved that all multiplicative functionals are continuous and a precise description of all regular and all degenerate maximal ideals...
In this paper, we show the representation of Köthe dual of Banach sequence spaces
The isomorphic classification problem for the Köthe models of some function spaces is considered. By making use of some interpolative neighborhoods which are related to the linear topological invariant and other invariants related to the “quantity” characteristics of the space, a necessary condition for the isomorphism of two such spaces is proved. As applications, it is shown that some pairs of spaces which have the same interpolation property are not isomorphic.
Let E be a Riesz space. By defining the spaces and of E, we prove that the center of is and show that the injectivity of the Arens homomorphism m: Z(E)” → Z(E˜) is equivalent to the equality . Finally, we also give some representation of an order continuous Banach lattice E with a weak unit and of the order dual E˜ of E in which are different from the representations appearing in the literature.
We construct the category of quotients of -spaces and we show that it is Abelian. This answers a question of L. Waelbroeck from 1990.