Some normability conditions on Fréchet spaces.
We define two new normability conditions on Fréchet spaces and announce some related results.
We define two new normability conditions on Fréchet spaces and announce some related results.
We investigate the stability of some properties of locally convex Riesz spaces in connection with subspaces and quotients and also the corresponding three-space-problems. We show that in the richer structure there are more positive answers than in the category of locally convex spaces.
We define the ε-product of an εb-space by quotient bornological spaces and we show that if G is a Schwartz εb-space and E|F is a quotient bornological space, then their εc-product Gεc(E|F) defined in [2] is isomorphic to the quotient bornological space (GεE)|(GεF).
We establish necessary and sufficient conditions under which weak Banach-Saks operators are weakly compact (respectively, L-weakly compact; respectively, M-weakly compact). As consequences, we give some interesting characterizations of order continuous norm (respectively, reflexive Banach lattice).
We prove that every bounded, uniformly separated sequence in a normed space contains a “uniformly independent” subsequence (see definition); the constants involved do not depend on the sequence or the space. The finite version of this result is true for all quasinormed spaces. We give a counterexample to the infinite version in for each 0 < p < 1. Some consequences for nonstandard topological vector spaces are derived.