Surjective isometries on spaces of differentiable vector-valued functions
This paper gives a characterization of surjective isometries on spaces of continuously differentiable functions with values in a finite-dimensional real Hilbert space.
This paper gives a characterization of surjective isometries on spaces of continuously differentiable functions with values in a finite-dimensional real Hilbert space.
Let G be a metrizable, compact abelian group and let Λ be a subset of its dual group Ĝ. We show that has the almost Daugavet property if and only if Λ is an infinite set, and that has the almost Daugavet property if and only if Λ is not a Λ(1) set.
In this paper it is shown that if a Banach lattice contains a copy of , then it contains an almost lattice isometric copy of . The above result is a lattice version of the well-known result of James concerning the almost isometric copies of in Banach spaces.
We study when the Daugavet equation is satisfied for weakly compact polynomials on a Banach space X, i.e. when the equality ||Id + P|| = 1 + ||P|| is satisfied for all weakly compact polynomials P: X → X. We show that this is the case when X = C(K), the real or complex space of continuous functions on a compact space K without isolated points. We also study the alternative Daugavet equation for polynomials P: X → X. We show that this equation holds for every polynomial on the complex space X =...
Let G be an infinite, compact abelian group and let Λ be a subset of its dual group Γ. We study the question which spaces of the form or and which quotients of the form or have the Daugavet property. We show that is a rich subspace of C(G) if and only if is a semi-Riesz set. If is a rich subspace of L¹(G), then is a rich subspace of C(G) as well. Concerning quotients, we prove that has the Daugavet property if Λ is a Rosenthal set, and that is a poor subspace of L¹(G) if Λ is...
A Banach space is said to be L-embedded if it is complemented in its bidual in such a way that the norm between the two complementary subspaces is additive. We prove that the dual of a non-reflexive L-embedded Banach space contains isometrically.
Any bounded sequence in an L¹-space admits a subsequence which can be written as the sum of a sequence of pairwise disjoint elements and a sequence which forms a uniformly integrable or equiintegrable (equivalently, a relatively weakly compact) set. This is known as the Kadec-Pełczyński-Rosenthal subsequence splitting lemma and has been generalized to preduals of von Neuman algebras and of JBW*-algebras. In this note we generalize it to JBW*-triple preduals.
We study the numerical radius of Lipschitz operators on Banach spaces. We give its basic properties. Our main result is a characterization of finite-dimensional real Banach spaces with Lipschitz numerical index 1. We also explicitly compute the Lipschitz numerical index of some classical Banach spaces.
We show that the range of a contractive projection on a Lebesgue-Bochner space of Hilbert valued functions Lp(H) is isometric to a lp-direct sum of Hilbert-valued Lp-spaces. We explicit the structure of contractive projections. As a consequence for every 1 < p < ∞ the class Cp of lp-direct sums of Hilbert-valued Lp-spaces is axiomatizable (in the class of all Banach spaces).
Using the technique of Fraïssé theory, for every constant , we construct a universal object in the class of Banach spaces possessing a normalized -suppression unconditional Schauder basis.
This paper is an investigation of the universal separable metric space up to isometry U discovered by Urysohn. A concrete construction of U as a metric subspace of the space C[0,1] of functions from [0,1] to the reals with the supremum metric is given. An answer is given to a question of Sierpiński on isometric embeddings of U in C[0,1]. It is shown that the closed linear span of an isometric copy of U in a Banach space which contains the zero of the Banach space is determined up to linear isometry....
Let be a Banach space. We give characterizations of when is a -ideal in for every Banach space in terms of nets of finite rank operators approximating weakly compact operators. Similar characterizations are given for the cases when is a -ideal in for every Banach space , when is a -ideal in for every Banach space , and when is a -ideal in for every Banach space .
Let χ(m,n) be the unconditional basis constant of the monomial basis , α ∈ ℕ₀ⁿ with |α| = m, of the Banach space of all m-homogeneous polynomials in n complex variables, endowed with the supremum norm on the n-dimensional unit polydisc ⁿ. We prove that the quotient of and √(n/log n) tends to 1 as n → ∞. This reflects a quite precise dependence of χ(m,n) on the degree m of the polynomials and their number n of variables. Moreover, we give an analogous formula for m-linear forms, a reformulation...
Let X be a Banach space. We study the circumstances under which there exists an uncountable set 𝓐 ⊂ X of unit vectors such that ||x-y|| > 1 for any distinct x,y ∈ 𝓐. We prove that such a set exists if X is quasi-reflexive and non-separable; if X is additionally super-reflexive then one can have ||x-y|| ≥ slant 1 + ε for some ε > 0 that depends only on X. If K is a non-metrisable compact, Hausdorff space, then the unit sphere of X = C(K) also contains such a subset; if moreover K is perfectly...