Partially bounded sets of infinite width.
Three sets occurring in functional analysis are shown to be of class PCA (also called ) and to be exactly of that class. The definition of each set is close to the usual objects of modern analysis, but some subtlety causes the sets to have a greater complexity than expected. Recent work in a similar direction is in [1, 2, 10, 11, 12].
It is proved that the Musielak-Orlicz function space LF(mu,X) of Bochner type is P-convex if and only if both spaces LF(mu,R) and X are P-convex. In particular, the Lebesgue-Bochner space Lp(mu,X) is P-convex iff X is P-convex.
We prove a very general theorem concerning the estimation of the expression ||T((a+b)/2) - (Ta+Tb)/2|| for different kinds of maps T satisfying some general perturbed isometry condition. It can be seen as a quantitative generalization of the classical Mazur-Ulam theorem. The estimates improve the existing ones for bi-Lipschitz maps. As a consequence we also obtain a very simple proof of the result of Gevirtz which answers the Hyers-Ulam problem and we prove a non-linear generalization of the Banach-Stone...
We study the Gromov-Hausdorff and Kadets distances between C(K)-spaces and their quotients. We prove that if the Gromov-Hausdorff distance between C(K) and C(L) is less than 1/16 then K and L are homeomorphic. If the Kadets distance is less than one, and K and L are metrizable, then C(K) and C(L) are linearly isomorphic. For K and L countable, if C(L) has a subquotient which is close enough to C(K) in the Gromov-Hausdorff sense then K is homeomorphic to a clopen subset of L.
Suppose A is a sectorial operator on a Banach space X, which admits an H∞-calculus. We study conditions on a multiplicative perturbation B of A which ensure that B also has an H∞-calculus. We identify a class of bounded operators T : X→X, which we call strongly triangular, such that if B = (1 + T) A is sectorial then it also has an H∞-calculus. In the case X is a Hilbert space an operator is strongly triangular if and only if ∑ Sn(T)/n <∞ where (Sn(T))n=1∞ are the singular values of T.
Given a Banach space X, for n ∈ ℕ and p ∈ (1,∞) we investigate the smallest constant ∈ (0,∞) for which every n-tuple of functions f₁,...,fₙ: -1,1ⁿ → X satisfies , where μ is the uniform probability measure on the discrete hypercube -1,1ⁿ, and and are the hypercube partial derivatives and the hypercube Laplacian, respectively. Denoting this constant by , we show that for every Banach space (X,||·||). This extends the classical Pisier inequality, which corresponds to the special case for...
Bref survol du théorème de non-plongement de J. Cheeger et B. Kleiner pour le groupe d’Heisenberg dans .