Some combinatorial and probabilistic inequalities and their application to Banach space theory II
In this paper, we establish some generalizations to approximate common fixed points for selfmappings in a normed linear space using the modified Ishikawa iteration process with errors in the sense of Liu [10] and Rafiq [14]. We use a more general contractive condition than those of Rafiq [14] to establish our results. Our results, therefore, not only improve a multitude of common fixed point results in literature but also generalize some of the results of Berinde [3], Rhoades [15] and recent results...
The main result is as follows. Let X be a Banach space and let Y be a closed subspace of X. Assume that the pair has the λ-bounded approximation property. Then there exists a net of finite-rank operators on X such that and for all α, and and converge pointwise to the identity operators on X and X*, respectively. This means that the pair (X,Y) has the λ-bounded duality approximation property.
We provide a characterization of continuous images of Radon-Nikodým compacta lying in a product of real lines and model on it a method for constructing natural examples of such continuous images.
Motivated by a well-known result of Kadison that describes surjective isometries of the space of compact and the space of bounded operators on a Hilbert space, in this paper we investigate the structure of surjective isometries on the space of compact and on the space of bounded operators between Banach spaces. We give an example to show that isometries in general need not be of the canonical form. As an application of our study of the group of isometries, we consider the algebraic reflexivity of...
The Fixed Point Theory for nonexpansive mappings is strongly based upon the geometry of the ambient Banach space. In section 1 we state the role which is played by the multidimensional convexity and smoothness in this theory. In section 2 we study the computation of the normal structure coefficient in finite dimensional lp-spaces and its connection with several classic geometric problems.