A theorem on B-splines
J. Domsta (1972)
Studia Mathematica
Félix Cabello Sánchez (1999)
Studia Mathematica
Let X be a normed space and the group of all linear surjective isometries of X that are finite-dimensional perturbations of the identity. We prove that if acts transitively on the unit sphere then X must be an inner product space.
Piotr Antosik, Charles Swartz (1984)
Studia Mathematica
Han, Yongsheng, Müller, Detlef, Yang, Dachun (2008)
Abstract and Applied Analysis
M. J. Carro, J. Cerdà, J. Soria (1996)
Revista Matemática de la Universidad Complutense de Madrid
We review the main facts that are behind a unified construction for the commutator theorem of the main interpolation methods.
Aleksei Lissitsin (2012)
Studia Mathematica
We consider convex versions of the strong approximation property and the weak bounded approximation property and develop a unified approach to their treatment introducing the inner and outer Λ-bounded approximation properties for a pair consisting of an operator ideal and a space ideal. We characterize this type of properties in a general setting and, using the isometric DFJP-factorization of operator ideals, provide a range of examples for this characterization, eventually answering a question...
T. Figiel, W. B. Johnson (1974)
Compositio Mathematica
A. Brundnyi, Y. Brundnyi (2007)
Revista Matemática Iberoamericana
Carlos Benítez, Krzysztof Przesławski, David Yost (1998)
Studia Mathematica
We define a handy new modulus for normed spaces. More precisely, given any normed space X, we define in a canonical way a function ξ:[0,1)→ ℝ which depends only on the two-dimensional subspaces of X. We show that this function is strictly increasing and convex, and that its behaviour is intimately connected with the geometry of X. In particular, ξ tells us whether or not X is uniformly smooth, uniformly convex, uniformly non-square or an inner product space.
William B. Johnson (1971)
Colloquium Mathematicae
William H. Ruckle (1978)
Mathematische Annalen
David Preiss, Petr Simon (1974)
Commentationes Mathematicae Universitatis Carolinae
Dmitry V. Rutsky (2014)
Studia Mathematica
The Coifman-Fefferman inequality implies quite easily that a Calderón-Zygmund operator T acts boundedly in a Banach lattice X on ℝⁿ if the Hardy-Littlewood maximal operator M is bounded in both X and X'. We establish a converse result under the assumption that X has the Fatou property and X is p-convex and q-concave with some 1 < p, q < ∞: if a linear operator T is bounded in X and T is nondegenerate in a certain sense (for example, if T is a Riesz transform) then M is bounded in both X and...
J. Kakol, M. López Pellicer (2009)
RACSAM
Giovanni Emmanuele (1990)
Extracta Mathematicae
This note is an announcement of results contained in the papers [4], [5], [6] concerning isomorphic properties of Banach spaces in projective tensor products (for this definition and some property we refer to [1]). At the end, some new result is obtained too.
Astashkin, Sergey V. (2001)
International Journal of Mathematics and Mathematical Sciences
Emanuele Casini (1986)
Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni
Si prendono in considerazione particolari costanti relative alla struttura della sfera unitaria di uno spazio di Banach. Se ne studiano alcune generali proprietà, con particolare riferimento alle relazioni con il modulo di convessità dello spazio. Se ne fornisce inoltre una esatta valutazione negli spazi .
Albrecht Pietsch (2009)
Revista Matemática Complutense
A. El Kaddouri, Mohammed Moussa (2013)
Acta Universitatis Carolinae. Mathematica et Physica
We give a brief survey of recent results of order limited operators related to some properties on Banach lattices.
Jesús M. Fernández Castillo (1990)
Extracta Mathematicae
A sequence (xn) in a Banach space X is said to be weakly-p-summable, 1 ≤ p < ∞, when for each x* ∈ X*, (x*xn) ∈ lp. We shall say that a sequence (xn) is weakly-p-convergent if for some x ∈ X, (xn - x) is weakly-p-summable.