Displaying 2601 – 2620 of 3166

Showing per page

The almost Daugavet property and translation-invariant subspaces

Simon Lücking (2014)

Colloquium Mathematicae

Let G be a metrizable, compact abelian group and let Λ be a subset of its dual group Ĝ. We show that C Λ ( G ) has the almost Daugavet property if and only if Λ is an infinite set, and that L ¹ Λ ( G ) has the almost Daugavet property if and only if Λ is not a Λ(1) set.

The almost lattice isometric copies of c 0 in Banach lattices

Jinxi Chen (2005)

Commentationes Mathematicae Universitatis Carolinae

In this paper it is shown that if a Banach lattice E contains a copy of c 0 , then it contains an almost lattice isometric copy of c 0 . The above result is a lattice version of the well-known result of James concerning the almost isometric copies of c 0 in Banach spaces.

The Ascoli property for function spaces and the weak topology of Banach and Fréchet spaces

S. Gabriyelyan, J. Kąkol, G. Plebanek (2016)

Studia Mathematica

Following Banakh and Gabriyelyan (2016) we say that a Tychonoff space X is an Ascoli space if every compact subset of C k ( X ) is evenly continuous; this notion is closely related to the classical Ascoli theorem. Every k -space, hence any k-space, is Ascoli. Let X be a metrizable space. We prove that the space C k ( X ) is Ascoli iff C k ( X ) is a k -space iff X is locally compact. Moreover, C k ( X ) endowed with the weak topology is Ascoli iff X is countable and discrete. Using some basic concepts from probability theory and...

The associated tensor norm to ( q , p ) -absolutely summing operators on C ( K ) -spaces

J. A. López Molina, Enrique A. Sánchez-Pérez (1997)

Czechoslovak Mathematical Journal

We give an explicit description of a tensor norm equivalent on C ( K ) F to the associated tensor norm ν q p to the ideal of ( q , p ) -absolutely summing operators. As a consequence, we describe a tensor norm on the class of Banach spaces which is equivalent to the left projective tensor norm associated to ν q p .

The Banach space S is complementably minimal and subsequentially prime

G. Androulakis, T. Schlumprecht (2003)

Studia Mathematica

We first include a result of the second author showing that the Banach space S is complementably minimal. We then show that every block sequence of the unit vector basis of S has a subsequence which spans a space isomorphic to its square. By the Pełczyński decomposition method it follows that every basic sequence in S which spans a space complemented in S has a subsequence which spans a space isomorphic to S (i.e. S is a subsequentially prime space).

The Banach-Saks property and Haar null sets

Eva Matoušková (1998)

Commentationes Mathematicae Universitatis Carolinae

A characterization of Haar null sets in the sense of Christensen is given. Using it, we show that if the dual of a Banach space X has the Banach-Saks property, then closed and convex subsets of X with empty interior are Haar null.

The Banach-Saks property in rearrangement invariant spaces

P. G. Dodds, E. M. Semenov, F. A. Sukochev (2004)

Studia Mathematica

This paper studies the Banach-Saks property in rearrangement invariant spaces on the positive half-line. A principal result of the paper shows that a separable rearrangement invariant space E with the Fatou property has the Banach-Saks property if and only if E has the Banach-Saks property for disjointly supported sequences. We show further that for Orlicz and Lorentz spaces, the Banach-Saks property is equivalent to separability although the separable parts of some Marcinkiewicz spaces fail the...

The band generated by homomorphisms on Banach lattices.

David C. Carothers, William A. Feldman (1998)

Extracta Mathematicae

This paper will consider the closure of the set of operators which may be expressed as a sum of lattice homomorphisms whose range is contained in a Dedekind complete Banch lattice.

Currently displaying 2601 – 2620 of 3166