Displaying 2981 – 3000 of 3166

Showing per page

Weak uniform continuity and weak sequential continuity of continuous n-linear mappings between Banach spaces.

Rajappa K. Asthagiri (1991)

Extracta Mathematicae

In this paper it is shown that the class LnWU (E1,E2,...,En;F) of weakly uniformly continuous n-linear mappings from E1x E2x...x En to F on bounded sets coincides with the class LnWSC (E1,E2,...,En;F) of weakly sequentially continuous n-linear mappings if and only if for every Banach space F, each Banach space Ei for i = 1,2,...,n does not contain a copy of l1.

Weak uniform normal structure and iterative fixed points of nonexpansive mappings

T. Domínguez Benavides, G. López Acedo, Hong Xu (1995)

Colloquium Mathematicae

This paper is concerned with weak uniform normal structure and iterative fixed points of nonexpansive mappings. Precisely, in Section 1, we show that the geometrical coefficient β(X) for a Banach space X recently introduced by Jimenez-Melado [8] is exactly the weakly convergent sequence coefficient WCS(X) introduced by Bynum [1] in 1980. We then show in Section 2 that all kinds of James' quasi-reflexive spaces have weak uniform normal structure. Finally, in Section 3, we show that in a space X with...

Weak uniform normal structure in direct sum spaces

Tomás Domínguez Benavides (1992)

Studia Mathematica

The weak normal structure coefficient WCS(X) is computed or bounded when X is a finite or infinite direct sum of reflexive Banach spaces with a monotone norm.

Weak uniform rotundity of Musielak--Orlicz spaces

Małgorzata Doman (1991)

Commentationes Mathematicae Universitatis Carolinae

We give necessary and sufficient conditions for weak uniform rotundity of Musielak–Orlicz spaces L ϕ with the Luxemburg norm. The result is a generalization of a theorem by Kami’nska and Kurc.

Weakly Compact Generating and Shrinking Markusevic Bases

Fabian, M., Hájek, P., Montesinos, V., Zizler, V. (2006)

Serdica Mathematical Journal

2000 Mathematics Subject Classification: 46B30, 46B03.It is shown that most of the well known classes of nonseparable Banach spaces related to the weakly compact generating can be characterized by elementary properties of the closure of the coefficient space of Markusevic bases for such spaces. In some cases, such property is then shared by all Markusevic bases in the space.

Weakly compact sets in Orlicz sequence spaces

Siyu Shi, Zhong Rui Shi, Shujun Wu (2021)

Czechoslovak Mathematical Journal

We combine the techniques of sequence spaces and general Orlicz functions that are broader than the classical cases of N -functions. We give three criteria for the weakly compact sets in general Orlicz sequence spaces. One criterion is related to elements of dual spaces. Under the restriction of lim u 0 M ( u ) / u = 0 , we propose two other modular types that are convenient to use because they get rid of elements of dual spaces. Subsequently, by one of these two modular criteria, we see that a set A in Riesz spaces l p ...

Weakly continuous functions of Baire class 1.

T. S. S. R. K. Rao (2000)

Extracta Mathematicae

For a compact Hausdorff space K and a Banach space X, let WC(K,X) denote the space of X-valued functions defined on K, that are continuous when X has the weak topology. In this note by a simple Banach space theoretic argument, we show that given f belonging to WC(K,X) there exists a net {fa} contained in C(K,X) (space of norm continuous functions) such that fa --> f pointwise w.r.t. the norm topology on X. Such a function f is said to be of Baire class 1.

Weakly countably determined spaces of high complexity

Antonio Avilés (2008)

Studia Mathematica

We prove that there exist weakly countably determined spaces of complexity higher than coanalytic. On the other hand, we also show that coanalytic sets can be characterized by the existence of a cofinal adequate family of closed sets. Therefore the Banach spaces constructed by means of these families have at most coanalytic complexity.

Weakly null sequences with upper estimates

Daniel Freeman (2008)

Studia Mathematica

We prove that if ( v i ) is a seminormalized basic sequence and X is a Banach space such that every normalized weakly null sequence in X has a subsequence that is dominated by ( v i ) , then there exists a uniform constant C ≥ 1 such that every normalized weakly null sequence in X has a subsequence that is C-dominated by ( v i ) . This extends a result of Knaust and Odell, who proved this for the cases in which ( v i ) is the standard basis for p or c₀.

Weakly uniformly rotund Banach spaces

Aníbal Moltó, Vicente Montesinos, José Orihuela, Stanimir L. Troyanski (1998)

Commentationes Mathematicae Universitatis Carolinae

The dual space of a WUR Banach space is weakly K-analytic.

Weak-star point of continuity property and Schauder bases

Ginés López-Pérez, José A. Soler-Arias (2013)

Studia Mathematica

We characterize the weak-star point of continuity property for subspaces of dual spaces with separable predual and we deduce that the weak-star point of continuity property is determined by subspaces with a Schauder basis in the natural setting of dual spaces of separable Banach spaces. As a consequence of the above characterization we show that a dual space has the Radon-Nikodym property if, and only if, every seminormalized topologically weak-star null tree has a boundedly complete branch, which...

Weak-type operators and the strong fundamental lemma of real interpolation theory

N. Krugljak, Y. Sagher, P. Shvartsman (2005)

Studia Mathematica

We prove an interpolation theorem for weak-type operators. This is closely related to interpolation between weak-type classes. Weak-type classes at the ends of interpolation scales play a similar role to that played by BMO with respect to the L p interpolation scale. We also clarify the roles of some of the parameters appearing in the definition of the weak-type classes. The interpolation theorem follows from a K-functional inequality for the operators, involving the Calderón operator. The inequality...

Weighted norm inequalities on spaces of homogeneous type

Qiyu Sun (1992)

Studia Mathematica

We give a characterization of the weights (u,w) for which the Hardy-Littlewood maximal operator is bounded from the Orlicz space L_Φ(u) to L_Φ(w). We give a characterization of the weight functions w (respectively u) for which there exists a nontrivial u (respectively w > 0 almost everywhere) such that the Hardy-Littlewood maximal operator is bounded from the Orlicz space L_Φ(u) to L_Φ(w).

Currently displaying 2981 – 3000 of 3166