On suprabarrelledness of c0 (Ω, X).
Si Ω es un conjunto no vacío y X es un espacio normado real o complejo, se tiene que, con la norma supremo, el espacio c0 (Ω, X) formado por las funciones f : Ω → X tales que para cada ε > 0 el conjunto {ω ∈ Ω : || f(ω) || > ε} es finito es supratonelado si y sólo si X es supratonelado.