Displaying 781 – 800 of 3161

Showing per page

Effective constructions of separable quotients of Banach spaces.

Marek Wójtowicz (1997)

Collectanea Mathematica

A simple way of obtaining separable quotients in the class of weakly countably determined (WCD) Banach spaces is presented. A large class of Banach lattices, possessing as a quotient c0, l1, l2, or a reflexive Banach space with an unconditional Schauder basis, is indicated.

Embedding a topological group into its WAP-compactification

Stefano Ferri, Jorge Galindo (2009)

Studia Mathematica

We prove that the topology of the additive group of the Banach space c₀ is not induced by weakly almost periodic functions or, what is the same, that this group cannot be represented as a group of isometries of a reflexive Banach space. We show, in contrast, that additive groups of Schwartz locally convex spaces are always representable as groups of isometries on some reflexive Banach space.

Embedding c 0 in bvca ( Σ , X )

Juan Carlos Ferrando, L. M. Sánchez Ruiz (2007)

Czechoslovak Mathematical Journal

If ( Ω , Σ ) is a measurable space and X a Banach space, we provide sufficient conditions on Σ and X in order to guarantee that b v c a ( Σ , X ) , the Banach space of all X -valued countably additive measures of bounded variation equipped with the variation norm, contains a copy of c 0 if and only if X does.

Embedding into Banach spaces with finite dimensional decompositions.

Edward W. Odell, Thomas Schlumprecht (2006)

RACSAM

This paper deals with the following types of problems: Assume a Banach space X has some property (P). Can it be embedded into some Banach space Z with a finite dimensional decomposition having property (P), or more generally, having a property related to (P)? Secondly, given a class of Banach spaces, does there exist a Banach space in this class, or in a closely related one, which is universal for this class?

Embeddings of Besov spaces of logarithmic smoothness

Fernando Cobos, Óscar Domínguez (2014)

Studia Mathematica

This paper deals with Besov spaces of logarithmic smoothness B p , r 0 , b formed by periodic functions. We study embeddings of B p , r 0 , b into Lorentz-Zygmund spaces L p , q ( l o g L ) β . Our techniques rely on the approximation structure of B p , r 0 , b , Nikol’skiĭ type inequalities, extrapolation properties of L p , q ( l o g L ) β and interpolation.

Embeddings of C(K) spaces into C(S,X) spaces with distortion strictly less than 3

Leandro Candido, Elói Medina Galego (2013)

Fundamenta Mathematicae

In the spirit of the classical Banach-Stone theorem, we prove that if K and S are intervals of ordinals and X is a Banach space having non-trivial cotype, then the existence of an isomorphism T from C(K, X) onto C(S,X) with distortion | | T | | | | T - 1 | | strictly less than 3 implies that some finite topological sum of K is homeomorphic to some finite topological sum of S. Moreover, if Xⁿ contains no subspace isomorphic to X n + 1 for every n ∈ ℕ, then K is homeomorphic to S. In other words, we obtain a vector-valued Banach-Stone...

Currently displaying 781 – 800 of 3161