Some aspects of convex analysis and the theory of Asplund spaces [Abstract of thesis]
This note contains a short proof of the equivalence of the Schur and Dunford-Pettis properties in the class of discrete KB-spaces. We also present an operator characterization of the Schur property (Theorem 2) and we notice that Banach lattices which band hereditary l1 coincide with Banach lattices having the Schur property. (This characterization is due to Popa (1977)). Moreover, the paper offers examples of Banach lattices with the positive Schur property and without the Schur property and which...
We introduce the notion of order weakly sequentially continuous lattice operations of a Banach lattice, use it to generalize a result regarding the characterization of order weakly compact operators, and establish its converse. Also, we derive some interesting consequences.
We establish necessary and sufficient conditions under which each operator between Banach lattices is weakly compact and we give some consequences.
We obtain a classification of projective tensor products of C(K) spaces according to whether none, exactly one or more than one factor contains copies of ℓ₁, in terms of the behaviour of certain classes of multilinear operators on the product of the spaces or the verification of certain Banach space properties of the corresponding tensor product. The main tool is an improvement of some results of Emmanuele and Hensgen on the reciprocal Dunford-Pettis and Pełczyński's (V) properties of the projective...
In this paper, we establish some generalizations to approximate common fixed points for selfmappings in a normed linear space using the modified Ishikawa iteration process with errors in the sense of Liu [10] and Rafiq [14]. We use a more general contractive condition than those of Rafiq [14] to establish our results. Our results, therefore, not only improve a multitude of common fixed point results in literature but also generalize some of the results of Berinde [3], Rhoades [15] and recent results...
The main result is as follows. Let X be a Banach space and let Y be a closed subspace of X. Assume that the pair has the λ-bounded approximation property. Then there exists a net of finite-rank operators on X such that and for all α, and and converge pointwise to the identity operators on X and X*, respectively. This means that the pair (X,Y) has the λ-bounded duality approximation property.
We provide a characterization of continuous images of Radon-Nikodým compacta lying in a product of real lines and model on it a method for constructing natural examples of such continuous images.