Loading [MathJax]/extensions/MathZoom.js
Displaying 1041 –
1060 of
3166
Let A be a linear closed densely defined operator in a complex Banach space X. If A is of type ω (i.e. the spectrum of A is contained in a sector of angle 2ω, symmetric around the real positive axis, and is bounded outside every larger sector) and has a bounded inverse, then A has a bounded functional calculus in the real interpolation spaces between X and the domain of the operator itself.
Let A be a linear closed one-to-one operator in a complex Banach space X, having dense domain and dense range. If A is of type ω (i.e.the spectrum of A is contained in a sector of angle 2ω, symmetric about the real positive axis, and is bounded outside every larger sector), then A has a bounded functional calculus in the real interpolation spaces between X and the intersection of the domain and the range of the operator itself.
In a previous paper the authors developed an H¹-BMO theory for unbounded metric measure spaces (M,ρ,μ) of infinite measure that are locally doubling and satisfy two geometric properties, called “approximate midpoint” property and “isoperimetric” property. In this paper we develop a similar theory for spaces of finite measure. We prove that all the results that hold in the infinite measure case have their counterparts in the finite measure case. Finally, we show that the theory applies to a class...
We study the σ-ideal of Haar null sets on Polish groups. It is shown that on a non-locally compact Polish group with an invariant metric this σ-ideal is closely related, in a precise sense, to the σ-ideal of non-dominating subsets of . Among other consequences, this result implies that the family of closed Haar null sets on a Polish group with an invariant metric is Borel in the Effros Borel structure if, and only if, the group is locally compact. This answers a question of Kechris. We also obtain...
We establish new results on the space BV of functions with bounded variation. While it is well known that this space admits no unconditional basis, we show that it is almost characterized by wavelet expansions in the following sense: if a function f is in BV, its coefficient sequence in a BV normalized wavelet basis satisfies a class of weak-l1 type estimates. These weak estimates can be employed to prove many interesting results. We use them to identify the interpolation spaces between BV and Sobolev...
2000 Mathematics Subject Classification: 46B50, 46B70, 46G12.A new measure of noncompactness on Banach spaces is defined from the Hausdorff measure of noncompactness, giving a quantitative version of a classical result by R. S. Phillips. From the main result, classical results are obtained now as corollaries and we have an application to interpolation theory of Banach spaces.
A Banach space is said to be if the maximal number of subspaces of X forming a direct sum is finite and equal to n. We study some properties of spaces, and their links with hereditarily indecomposable spaces; in particular, we show that if X is complex , then dim , where S(X) denotes the space of strictly singular operators on X. It follows that if X is a real hereditarily indecomposable space, then ℒ(X)/S(X) is a division ring isomorphic either to ℝ, ℂ, or ℍ, the quaternionic division ring....
We introduce higher order spreading models associated to a Banach space X. Their definition is based on ℱ-sequences with ℱ a regular thin family and on plegma families. We show that the higher order spreading models of a Banach space X form an increasing transfinite hierarchy . Each contains all spreading models generated by ℱ-sequences with order of ℱ equal to ξ. We also study the fundamental properties of this hierarchy.
In this article, we shall extend the formalization of [10] to discuss higher-order partial differentiation of real valued functions. The linearity of this operator is also proved (refer to [10], [12] and [13] for partial differentiation).
Let and be two complex Banach spaces, a nonempty subset of and a compact subset of . The concept of holomorphy type between and , and the natural locally convex topology on the vector space of all holomorphic mappings of a given holomorphy type from to were considered first by L. Nachbin. Motived by his work, we introduce the locally convex space of all germs of holomorphic mappings into around of a given holomorphy type , and study its interplay with and some...
Currently displaying 1041 –
1060 of
3166