Previous Page 6

Displaying 101 – 118 of 118

Showing per page

Representing non-weakly compact operators

Manuel González, Eero Saksman, Hans-Olav Tylli (1995)

Studia Mathematica

For each S ∈ L(E) (with E a Banach space) the operator R(S) ∈ L(E**/E) is defined by R(S)(x** + E) = S**x** + E(x** ∈ E**). We study mapping properties of the correspondence S → R(S), which provides a representation R of the weak Calkin algebra L(E)/W(E) (here W(E) denotes the weakly compact operators on E). Our results display strongly varying behaviour of R. For instance, there are no non-zero compact operators in Im(R) in the case of L 1 and C(0,1), but R(L(E)/W(E)) identifies isometrically with...

Rich families and elementary submodels

Marek Cúth, Ondřej Kalenda (2014)

Open Mathematics

We compare two methods of proving separable reduction theorems in functional analysis - the method of rich families and the method of elementary submodels. We show that any result proved using rich families holds also when formulated with elementary submodels and the converse is true in spaces with fundamental minimal system and in spaces of density ℵ1. We do not know whether the converse is true in general. We apply our results to show that a projectional skeleton may be without loss of generality...

Rosenthal operator spaces

M. Junge, N. J. Nielsen, T. Oikhberg (2008)

Studia Mathematica

In 1969 Lindenstrauss and Rosenthal showed that if a Banach space is isomorphic to a complemented subspace of an L p -space, then it is either an L p -space or isomorphic to a Hilbert space. This is the motivation of this paper where we study non-Hilbertian complemented operator subspaces of non-commutative L p -spaces and show that this class is much richer than in the commutative case. We investigate the local properties of some new classes of operator spaces for every 2 < p < ∞ which can be considered...

Rotund and uniformly rotund Banach spaces.

V. Montesinos, J. R. Torregrosa (1991)

Collectanea Mathematica

In this paper we prove that the geometrical notions of Rotundity and Uniform Rotundity of the norm in a Banach space are stable for the generalized Banach products.

Rotundity and smoothness of convex bodies in reflexive and nonreflexive spaces

Victor Klee, Libor Veselý, Clemente Zanco (1996)

Studia Mathematica

For combining two convex bodies C and D to produce a third body, two of the most important ways are the operation ∓ of forming the closure of the vector sum C+D and the operation γ̅ of forming the closure of the convex hull of C ⋃ D. When the containing normed linear space X is reflexive, it follows from weak compactness that the vector sum and the convex hull are already closed, and from this it follows that the class of all rotund bodies in X is stable with respect to the operation ∓ and the class...

Roughness of two norms on Musielak-Orlicz function spaces

Jimin Zheng, Lihuan Sun, Yun'an Cui (2008)

Banach Center Publications

In this paper, the criteria of strong roughness, roughness and pointwise roughness of Orlicz norm and Luxemburg norm on Musielak-Orlicz function spaces are obtained.

RUC systems in rearrangement invariant spaces

P. G. Dodds, E. M. Semenov, F. A. Sukochev (2002)

Studia Mathematica

We present necessary and sufficient conditions for a rearrangement invariant function space to have a complete orthonormal uniformly bounded RUC system.

Currently displaying 101 – 118 of 118

Previous Page 6