Displaying 1381 – 1400 of 3166

Showing per page

Non-commutative martingale VMO-spaces

Narcisse Randrianantoanina (2009)

Studia Mathematica

We study Banach space properties of non-commutative martingale VMO-spaces associated with general von Neumann algebras. More precisely, we obtain a version of the classical Kadets-Pełczyński dichotomy theorem for subspaces of non-commutative martingale VMO-spaces. As application we prove that if ℳ is hyperfinite then the non-commutative martingale VMO-space associated with a filtration of finite-dimensional von Neumannn subalgebras of ℳ has property (u).

Noncommutative Valdivia compacta

Marek Cúth (2014)

Commentationes Mathematicae Universitatis Carolinae

We prove some generalizations of results concerning Valdivia compact spaces (equivalently spaces with a commutative retractional skeleton) to the spaces with a retractional skeleton (not necessarily commutative). Namely, we show that the dual unit ball of a Banach space is Corson provided the dual unit ball of every equivalent norm has a retractional skeleton. Another result to be mentioned is the following. Having a compact space K , we show that K is Corson if and only if every continuous image...

Non-containment of l1 in projective tensor products of Banach spaces.

J. C. Díaz Alcaide (1990)

Revista Matemática de la Universidad Complutense de Madrid

Two properties on projective tensor products are introduced and briefly studied. We apply them to give sufficient conditions to assure the non-containment of l1 in a projective tensor product of Banach spaces.

Nonexpansive retracts in Banach spaces

Eva Kopecká, Simeon Reich (2007)

Banach Center Publications

We study various aspects of nonexpansive retracts and retractions in certain Banach and metric spaces, with special emphasis on the compact nonexpansive envelope property.

Nonlinear Maps between Besov and Sobolev spaces

Philip Brenner, Peter Kumlin (2010)

Annales de la faculté des sciences de Toulouse Mathématiques

Our main result shows that for a large class of nonlinear local mappings between Besov and Sobolev space, interpolation is an exceptional low dimensional phenomenon. This extends previous results by Kumlin [13] from the case of analytic mappings to Lipschitz and Hölder continuous maps (Corollaries 1 and 2), and which go back to ideas of the late B.E.J. Dahlberg [8].

Non-separable Banach spaces with non-meager Hamel basis

Taras Banakh, Mirna Džamonja, Lorenz Halbeisen (2008)

Studia Mathematica

We show that an infinite-dimensional complete linear space X has: ∙ a dense hereditarily Baire Hamel basis if |X| ≤ ⁺; ∙ a dense non-meager Hamel basis if | X | = κ ω = 2 κ for some cardinal κ.

Non-separable tree-like Banach spaces and Rosenthal's ℓ₁-theorem

Costas Poulios (2014)

Studia Mathematica

We introduce and investigate a class of non-separable tree-like Banach spaces. As a consequence, we prove that we cannot achieve a satisfactory extension of Rosenthal's ℓ₁-theorem to spaces of the type ℓ₁(κ) for κ an uncountable cardinal.

Non-similarity of Walsh and trigonometric systems

P. Wojtaszczyk (2000)

Studia Mathematica

We show that in L p for p ≠ 2 the constants of equivalence between finite initial segments of the Walsh and trigonometric systems have power type growth. We also show that the Riemann ideal norms connected with those systems have power type growth.

Non-universal families of separable Banach spaces

Ondřej Kurka (2016)

Studia Mathematica

We prove that if 𝓒 is a family of separable Banach spaces which is analytic with respect to the Effros Borel structure and no X ∈ 𝓒 is isometrically universal for all separable Banach spaces, then there exists a separable Banach space with a monotone Schauder basis which is isometrically universal for 𝓒 but not for all separable Banach spaces. We also establish an analogous result for the class of strictly convex spaces.

Norm attaining and numerical radius attaining operators.

María D. Acosta, Rafael Payá (1989)

Revista Matemática de la Universidad Complutense de Madrid

In this note we discuss some results on numerical radius attaining operators paralleling earlier results on norm attaining operators. For arbitrary Banach spaces X and Y, the set of (bounded, linear) operators from X to Y whose adjoints attain their norms is norm-dense in the space of all operators. This theorem, due to W. Zizler, improves an earlier result by J. Lindenstrauss on the denseness of operators whose second adjoints attain their norms, and is also related to a recent result by C. Stegall...

Norm attaining multilinear forms and polynomials on preduals of Lorentz sequence spaces

M. Jimenéz Sevilla, Rafael Payá (1998)

Studia Mathematica

For each natural number N, we give an example of a Banach space X such that the set of norm attaining N-linear forms is dense in the space of all continuous N-linear forms on X, but there are continuous (N+1)-linear forms on X which cannot be approximated by norm attaining (N+1)-linear forms. Actually,X is the canonical predual of a suitable Lorentz sequence space. We also get the analogous result for homogeneous polynomials.

Currently displaying 1381 – 1400 of 3166