Displaying 201 – 220 of 1406

Showing per page

Ciesielski and Franklin systems

Gegham G. Gevorkyan (2006)

Banach Center Publications

A short survey of results on classical Franklin system, Ciesielski systems and general Franklin systems is given. The principal role of the investigations of Z. Ciesielski in the development of these three topics is presented. Recent results on general Franklin systems are discussed in more detail. Some open problems are posed.

Clarkson type inequalities and their relations to the concepts of type and cotype.

Mikio Kato, Lars-Erik. Persson, Yasuji Takahashi (2000)

Collectanea Mathematica

We prove some multi-dimensional Clarkson type inequalities for Banach spaces. The exact relations between such inequalities and the concepts of type and cotype are shown, which gives a conclusion in an extended setting to M. Milman's observation on Clarkson's inequalities and type. A similar investigation conceming the close connection between random Clarkson inequality and the corresponding concepts of type and cotype is also included. The obtained results complement, unify and generalize several...

Coefficient of orthogonal convexity of some Banach function spaces

Paweł Kolwicz, Stefan Rolewicz (2004)

Studia Mathematica

We study orthogonal uniform convexity, a geometric property connected with property (β) of Rolewicz, P-convexity of Kottman, and the fixed point property (see [19, [20]). We consider the coefficient of orthogonal convexity in Köthe spaces and Köthe-Bochner spaces.

Commutators based on the Calderón reproducing formula

Krzysztof Nowak (1993)

Studia Mathematica

We prove the Schatten-Lorentz ideal criteria for commutators of multiplications and projections based on the Calderón reproducing formula and the decomposition theorem for the space of symbols corresponding to commutators in the Schatten ideal.

Commutators of the fractional maximal function on variable exponent Lebesgue spaces

Pu Zhang, Jianglong Wu (2014)

Czechoslovak Mathematical Journal

Let M β be the fractional maximal function. The commutator generated by M β and a suitable function b is defined by [ M β , b ] f = M β ( b f ) - b M β ( f ) . Denote by 𝒫 ( n ) the set of all measurable functions p ( · ) : n [ 1 , ) such that 1 < p - : = ess inf x n p ( x ) and p + : = ess sup x n p ( x ) < , and by ( n ) the set of all p ( · ) 𝒫 ( n ) such that the Hardy-Littlewood maximal function M is bounded on L p ( · ) ( n ) . In this paper, the authors give some characterizations of b for which [ M β , b ] is bounded from L p ( · ) ( n ) into L q ( · ) ( n ) , when p ( · ) 𝒫 ( n ) , 0 < β < n / p + and 1 / q ( · ) = 1 / p ( · ) - β / n with q ( · ) ( n - β ) / n ( n ) .

Compact embeddings of Besov spaces involving only slowly varying smoothness

António Caetano, Amiran Gogatishvili, Bohumír Opic (2011)

Czechoslovak Mathematical Journal

We characterize compact embeddings of Besov spaces B p , r 0 , b ( n ) involving the zero classical smoothness and a slowly varying smoothness b into Lorentz-Karamata spaces L p , q ; b ¯ ( Ω ) , where Ω is a bounded domain in n and b ¯ is another slowly varying function.

Currently displaying 201 – 220 of 1406