Equivalence of the properties () and (NUC) in Orlicz spaces
We obtain the equivalence of the properties and (NUC) in Orlicz function spaces. This answers a question raised by Y. Cui, R. Pluciennik and T. Wang.
We obtain the equivalence of the properties and (NUC) in Orlicz function spaces. This answers a question raised by Y. Cui, R. Pluciennik and T. Wang.
We discuss the validity of the Helmholtz decomposition of the Muckenhoupt -weighted -space for any domain in , , , and Muckenhoupt -weight . Set and . Then the Helmholtz decomposition of and and the variational estimate of and are equivalent. Furthermore, we can replace and by and , respectively. The proof is based on the reflexivity and orthogonality of and and the Hahn-Banach theorem. As a corollary of our main result, we obtain the extrapolation theorem with...
Generalizing the classical BMO spaces defined on the unit circle with vector or scalar values, we define the spaces and , where for x ≥ 0 and q ∈ [1,∞[, and where B is a Banach space. Note that and by the John-Nirenberg theorem. Firstly, we study a generalization of the classical Paley inequality and improve the Blasco-Pełczyński theorem in the vector case. Secondly, we compute the idempotent multipliers of . Pisier conjectured that the supports of idempotent multipliers of form a Boolean...
Étude de l’intersection pour un ensemble de mesures positives bornées sur un espace (ou un groupe commutatif) localement compact.Pour un espace localement compact, on étudie les rapports entre les propriétés de compacité de , la densité de certains sous-espaces, le dual et le bidual de ces sous-espaces, la compacité des applications canoniques.Pour un groupe commutatif localement compact de dual , certaines de ces propriétés sont liées à la continuité de l’application et à la compacité relative...
In this paper, we characterize boundedness and compactness of weighted composition operators on the Dirichlet space and obtain the estimates for the essential norm.