Displaying 61 – 80 of 1406

Showing per page

A notion of Orlicz spaces for vector valued functions

Gudrun Schappacher (2005)

Applications of Mathematics

The notion of the Orlicz space is generalized to spaces of Banach-space valued functions. A well-known generalization is based on N -functions of a real variable. We consider a more general setting based on spaces generated by convex functions defined on a Banach space. We investigate structural properties of these spaces, such as the role of the delta-growth conditions, separability, the closure of , and representations of the dual space.

A pair of linear functional inequalities and a characterization of L p -norm

Dorota Krassowska, Janusz Matkowski (2005)

Annales Polonici Mathematici

It is shown that, under some general algebraic conditions on fixed real numbers a,b,α,β, every solution f:ℝ → ℝ of the system of functional inequalities f(x+a) ≤ f(x)+α, f(x+b) ≤ f(x)+β that is continuous at some point must be a linear function (up to an additive constant). Analogous results for three other similar simultaneous systems are presented. An application to a characterization of L p -norm is given.

A remark on complex powers of analytic functions

Giuseppe Zampieri (1985)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

Sia K n un compatto, f 0 una funzione analitica all'intorno di K , ed m la massima molteplicità in K degli zeri di f ; si prova che la potenza f λ ( λ , R e λ > 1 m ) è integrabile in K . L'estensione meromorfa dell'applicazione λ f λ da R e λ > 0 a tutto (con valori in 𝒟 ( K ) anziché in L 1 ( K ) ) era già stata provata in [1] e [2].

A remark on the asymmetry of convolution operators

Saverio Giulini (1989)

Atti della Accademia Nazionale dei Lincei. Classe di Scienze Fisiche, Matematiche e Naturali. Rendiconti Lincei. Matematica e Applicazioni

A convolution operator, bounded on L q ( n ) , is bounded on L p ( n ) , with the same operator norm, if p and q are conjugate exponents. It is well known that this fact is false if we replace n with a general non-commutative locally compact group G . In this paper we give a simple construction of a convolution operator on a suitable compact group G , wich is bounded on L q ( G ) for every q [ 2 , ) and is unbounded on L p ( G ) if p [ 1 , 2 ) .

A remark on the multipliers of the Haar basis of L¹[0,1]

H. M. Wark (2015)

Studia Mathematica

A proof of a necessary and sufficient condition for a sequence to be a multiplier of the normalized Haar basis of L¹[0,1] is given. This proof depends only on the most elementary properties of this system and is an alternative proof to that recently found by Semenov & Uksusov (2012). Additionally, representations are given, which use stochastic processes, of this multiplier norm and of related multiplier norms.

Currently displaying 61 – 80 of 1406