Displaying 941 – 960 of 1406

Showing per page

Sequence spaces generated by moduli of smoothness.

J. Musielak, A. Waszak (1995)

Revista Matemática de la Universidad Complutense de Madrid

There are defined sequential moduli in the remainder form for real sequences. Properties of sequence spaces generated by means of the above moduli are investigated.

Sequences of independent identically distributed functions in rearrangement invariant spaces

S. V. Astashkin, F. A. Sukochev (2008)

Banach Center Publications

A new set of sufficient conditions under which every sequence of independent identically distributed functions from a rearrangement invariant (r.i.) space on [0,1] spans there a Hilbertian subspace are given. We apply these results to resolve open problems of N. L. Carothers and S. L. Dilworth, and of M. Sh. Braverman, concerning such sequences in concrete r.i. spaces.

Several characterizations for the special atom spaces with applications.

Geraldo Soares de Souza, Richard O'Neil, Gary Sampson (1986)

Revista Matemática Iberoamericana

The theory of functions plays an important role in harmonic analysis. Because of this, it turns out that some spaces of analytic functions have been studied extensively, such as Hp-spaces, Bergman spaces, etc. One of the major insights that has developed in the study of Hp-spaces is what we call the real atomic characterization of these spaces.

Sharp constants for Moser-type inequalities concerning embeddings into Zygmund spaces

Robert Černý (2012)

Commentationes Mathematicae Universitatis Carolinae

Let n 2 and Ω n be a bounded set. We give a Moser-type inequality for an embedding of the Orlicz-Sobolev space W 0 L Φ ( Ω ) , where the Young function Φ behaves like t n log α ( t ) , α < n - 1 , for t large, into the Zygmund space Z 0 n - 1 - α n ( Ω ) . We also study the same problem for the embedding of the generalized Lorentz-Sobolev space W 0 m L n m , q log α L ( Ω ) , m < n , q ( 1 , ] , α < 1 q ' , embedded into the Zygmund space Z 0 1 q ' - α ( Ω ) .

Sharp embeddings of Besov spaces with logarithmic smoothness.

Petr Gurka, Bohumir Opic (2005)

Revista Matemática Complutense

We prove sharp embeddings of Besov spaces Bp,rσ,α with the classical smoothness σ and a logarithmic smoothness α into Lorentz-Zygmund spaces. Our results extend those with α = 0, which have been proved by D. E. Edmunds and H. Triebel. On page 88 of their paper (Math. Nachr. 207 (1999), 79-92) they have written: ?Nevertheless a direct proof, avoiding the machinery of function spaces, would be desirable.? In our paper we give such a proof even in a more general context. We cover both the sub-limiting...

Sharp estimates of the embedding constants for Besov spaces.

David E. Edmunds, W. Desmond Evans, Georgi E. Karadzhov (2006)

Revista Matemática Complutense

Sharp estimates are obtained for the rates of blow up of the norms of embeddings of Besov spaces in Lorentz spaces as the parameters approach critical values.

Sharp inequalities for Riesz transforms

Adam Osękowski (2014)

Studia Mathematica

We establish the following sharp local estimate for the family R j j = 1 d of Riesz transforms on d . For any Borel subset A of d and any function f : d , A | R j f ( x ) | d x C p | | f | | L p ( d ) | A | 1 / q , 1 < p < ∞. Here q = p/(p-1) is the harmonic conjugate to p, C p = [ 2 q + 2 Γ ( q + 1 ) / π q + 1 k = 0 ( - 1 ) k / ( 2 k + 1 ) q + 1 ] 1 / q , 1 < p < 2, and C p = [ 4 Γ ( q + 1 ) / π q k = 0 1 / ( 2 k + 1 ) q ] 1 / q , 2 ≤ p < ∞. This enables us to determine the precise values of the weak-type constants for Riesz transforms for 1 < p < ∞. The proof rests on appropriate martingale inequalities, which are of independent interest.

Sharp Logarithmic Inequalities for Two Hardy-type Operators

Adam Osękowski (2015)

Bulletin of the Polish Academy of Sciences. Mathematics

For any locally integrable f on ℝⁿ, we consider the operators S and T which average f over balls of radius |x| and center 0 and x, respectively: S f ( x ) = 1 / | B ( 0 , | x | ) | B ( 0 , | x | ) f ( t ) d t , T f ( x ) = 1 / | B ( x , | x | ) | B ( x , | x | ) f ( t ) d t for x ∈ ℝⁿ. The purpose of the paper is to establish sharp localized LlogL estimates for S and T. The proof rests on a corresponding one-weight estimate for a martingale maximal function, a result which is of independent interest.

Sharp Weak-Type Inequality for the Haar System, Harmonic Functions and Martingales

Adam Osękowski (2014)

Bulletin of the Polish Academy of Sciences. Mathematics

Let ( h k ) k 0 be the Haar system on [0,1]. We show that for any vectors a k from a separable Hilbert space and any ε k [ - 1 , 1 ] , k = 0,1,2,..., we have the sharp inequality | | k = 0 n ε k a k h k | | W ( [ 0 , 1 ] ) 2 | | k = 0 n a k h k | | L ( [ 0 , 1 ] ) , n = 0,1,2,..., where W([0,1]) is the weak- L space introduced by Bennett, DeVore and Sharpley. The above estimate is generalized to the sharp weak-type bound | | Y | | W ( Ω ) 2 | | X | | L ( Ω ) , where X and Y stand for -valued martingales such that Y is differentially subordinate to X. An application to harmonic functions on Euclidean domains is presented.

Sigma order continuity and best approximation in L ϱ -spaces

Shelby J. Kilmer, Wojciech M. Kozƚowski, Grzegorz Lewicki (1991)

Commentationes Mathematicae Universitatis Carolinae

In this paper we give a characterization of σ -order continuity of modular function spaces L ϱ in terms of the existence of best approximants by elements of order closed sublattices of L ϱ . We consider separately the case of Musielak–Orlicz spaces generated by non- σ -finite measures. Such spaces are not modular function spaces and the proofs require somewhat different methods.

Singular integral operators on Nakano spaces with weights having finite sets of discontinuities

Alexei Yu. Karlovich (2011)

Banach Center Publications

In 1968, Gohberg and Krupnik found a Fredholm criterion for singular integral operators of the form aP + bQ, where a,b are piecewise continuous functions and P,Q are complementary projections associated to the Cauchy singular integral operator, acting on Lebesgue spaces over Lyapunov curves. We extend this result to the case of Nakano spaces (also known as variable Lebesgue spaces) with certain weights having finite sets of discontinuities on arbitrary Carleson curves.

Currently displaying 941 – 960 of 1406