-Correspondences: The inclusion .
Dick proved that all dyadic order 2 digital nets satisfy optimal upper bounds on the -discrepancy. We prove this for arbitrary prime base b with an alternative technique using Haar bases. Furthermore, we prove that all digital nets satisfy optimal upper bounds on the discrepancy function in Besov spaces with dominating mixed smoothness for a certain parameter range, and enlarge that range for order 2 digital nets. The discrepancy function in Triebel-Lizorkin and Sobolev spaces with dominating mixed...
The paper investigates the nonlinear function spaces introduced by Giaquinta, Modica and Souček. It is shown that a function from is approximated by functions strongly in whenever . An example is shown of a function which is in but not in .
Starting from a general formulation of the characterization by dyadic crowns of Sobolev spaces, the authors give a result of continuity for pseudodifferential operators whose symbol a(x,ξ) is non smooth with respect to x and whose derivatives with respect to ξ have a decay of order ρ with . The algebra property for some classes of weighted Sobolev spaces is proved and an application to multi - quasi - elliptic semilinear equations is given.
We extend some results by Goldshtein, Kuzminov, and Shvedov about the -cohomology of warped cylinders to -cohomology for . As an application, we establish some sufficient conditions for the nontriviality of the -torsion of a surface of revolution.