Displaying 521 – 540 of 4028

Showing per page

Bounded evaluation operators from H p into q

Martin Smith (2007)

Studia Mathematica

Given 0 < p,q < ∞ and any sequence z = zₙ in the unit disc , we define an operator from functions on to sequences by T z , p ( f ) = ( 1 - | z | ² ) 1 / p f ( z ) . Necessary and sufficient conditions on zₙ are given such that T z , p maps the Hardy space H p boundedly into the sequence space q . A corresponding result for Bergman spaces is also stated.

Bounded linear functionals on the space of Henstock-Kurzweil integrable functions

Tuo-Yeong Lee (2009)

Czechoslovak Mathematical Journal

Applying a simple integration by parts formula for the Henstock-Kurzweil integral, we obtain a simple proof of the Riesz representation theorem for the space of Henstock-Kurzweil integrable functions. Consequently, we give sufficient conditions for the existence and equality of two iterated Henstock-Kurzweil integrals.

Bounded operators on weighted spaces of holomorphic functions on the upper half-plane

Mohammad Ali Ardalani, Wolfgang Lusky (2012)

Studia Mathematica

Let v be a standard weight on the upper half-plane , i.e. v: → ]0,∞[ is continuous and satisfies v(w) = v(i Im w), w ∈ , v(it) ≥ v(is) if t ≥ s > 0 and l i m t 0 v ( i t ) = 0 . Put v₁(w) = Im wv(w), w ∈ . We characterize boundedness and surjectivity of the differentiation operator D: Hv() → Hv₁(). For example we show that D is bounded if and only if v is at most of moderate growth. We also study composition operators on Hv().

Boundedness and compactness of the embedding between spaces with multiweighted derivatives when 1 q < p <

Zamira Abdikalikova, Ryskul Oinarov, Lars-Erik Persson (2011)

Czechoslovak Mathematical Journal

We consider a new Sobolev type function space called the space with multiweighted derivatives W p , α ¯ n , where α ¯ = ( α 0 , α 1 , ... , α n ) , α i , i = 0 , 1 , ... , n , and f W p , α ¯ n = D α ¯ n f p + i = 0 n - 1 | D α ¯ i f ( 1 ) | , D α ¯ 0 f ( t ) = t α 0 f ( t ) , D α ¯ i f ( t ) = t α i d d t D α ¯ i - 1 f ( t ) , i = 1 , 2 , ... , n . We establish necessary and sufficient conditions for the boundedness and compactness of the embedding W p , α ¯ n W q , β ¯ m , when 1 q < p < , 0 m < n .

Boundedness of convolution operators with smooth kernels on Orlicz spaces

Hugo Aimar, Eleonor Harboure, Bibiana Iaffei (2002)

Studia Mathematica

We study boundedness in Orlicz norms of convolution operators with integrable kernels satisfying a generalized Lipschitz condition with respect to normal quasi-distances of ℝⁿ and continuity moduli given by growth functions.

Boundedness of generalized fractional integral operators on Orlicz spaces near L 1 over metric measure spaces

Daiki Hashimoto, Takao Ohno, Tetsu Shimomura (2019)

Czechoslovak Mathematical Journal

We are concerned with the boundedness of generalized fractional integral operators I ρ , τ from Orlicz spaces L Φ ( X ) near L 1 ( X ) to Orlicz spaces L Ψ ( X ) over metric measure spaces equipped with lower Ahlfors Q -regular measures, where Φ is a function of the form Φ ( r ) = r ( r ) and is of log-type. We give a generalization of paper by Mizuta et al. (2010), in the Euclidean setting. We deal with both generalized Riesz potentials and generalized logarithmic potentials.

Boundedness of Hardy-Littlewood maximal operator in the framework of Lizorkin-Triebel spaces.

Soulaymane Korry (2002)

Revista Matemática Complutense

We describe a class O of nonlinear operators which are bounded on the Lizorkin-Triebel spaces Fsp,q(Rn), for 0 &lt; s &lt; 1 and 1 &lt; p, q &lt; ∞. As a corollary, we prove that the Hardy-Littlewood maximal operator is bounded on Fsp,q(Rn), for 0 &lt; s &lt; 1 and 1 &lt; p, q &lt; ∞ ; this extends the result of Kinnunen (1997), valid for the Sobolev space H1p(Rn).

Currently displaying 521 – 540 of 4028