Displaying 61 – 80 of 114

Showing per page

Fractional Hajłasz-Morrey-Sobolev spaces on quasi-metric measure spaces

Wen Yuan, Yufeng Lu, Dachun Yang (2015)

Studia Mathematica

In this article, via fractional Hajłasz gradients, the authors introduce a class of fractional Hajłasz-Morrey-Sobolev spaces, and investigate the relations among these spaces, (grand) Morrey-Triebel-Lizorkin spaces and Triebel-Lizorkin-type spaces on both Euclidean spaces and RD-spaces.

Fractional Hardy inequalities and visibility of the boundary

Lizaveta Ihnatsyeva, Juha Lehrbäck, Heli Tuominen, Antti V. Vähäkangas (2014)

Studia Mathematica

We prove fractional order Hardy inequalities on open sets under a combined fatness and visibility condition on the boundary. We demonstrate by counterexamples that fatness conditions alone are not sufficient for such Hardy inequalities to hold. In addition, we give a short exposition of various fatness conditions related to our main result, and apply fractional Hardy inequalities in connection with the boundedness of extension operators for fractional Sobolev spaces.

Fractional Hardy inequality with a remainder term

Bartłomiej Dyda (2011)

Colloquium Mathematicae

We prove a Hardy inequality for the fractional Laplacian on the interval with the optimal constant and additional lower order term. As a consequence, we also obtain a fractional Hardy inequality with the best constant and an extra lower order term for general domains, following the method of M. Loss and C. Sloane [J. Funct. Anal. 259 (2010)].

Fractional Hardy-Sobolev-Maz'ya inequality for domains

Bartłomiej Dyda, Rupert L. Frank (2012)

Studia Mathematica

We prove a fractional version of the Hardy-Sobolev-Maz’ya inequality for arbitrary domains and L p norms with p ≥ 2. This inequality combines the fractional Sobolev and the fractional Hardy inequality into a single inequality, while keeping the sharp constant in the Hardy inequality.

Fractional Maximal Functions in Metric Measure Spaces

Toni Heikkinen, Juha Lehrbäck, Juho Nuutinen, Heli Tuominen (2013)

Analysis and Geometry in Metric Spaces

We study the mapping properties of fractional maximal operators in Sobolev and Campanato spaces in metric measure spaces. We show that, under certain restrictions on the underlying metric measure space, fractional maximal operators improve the Sobolev regularity of functions and map functions in Campanato spaces to Hölder continuous functions. We also give an example of a space where fractional maximal function of a Lipschitz function fails to be continuous.

Fractional Sobolev norms and structure of Carnot-Carathéodory balls for Hörmander vector fields

Daniele Morbidelli (2000)

Studia Mathematica

We study the notion of fractional L p -differentiability of order s ( 0 , 1 ) along vector fields satisfying the Hörmander condition on n . We prove a modified version of the celebrated structure theorem for the Carnot-Carathéodory balls originally due to Nagel, Stein and Wainger. This result enables us to demonstrate that different W s , p -norms are equivalent. We also prove a local embedding W 1 , p W s , q , where q is a suitable exponent greater than p.

Fragmentability and compactness in C(K)-spaces

B. Cascales, G. Manjabacas, G. Vera (1998)

Studia Mathematica

Let K be a compact Hausdorff space, C p ( K ) the space of continuous functions on K endowed with the pointwise convergence topology, D ⊂ K a dense subset and t p ( D ) the topology in C(K) of pointwise convergence on D. It is proved that when C p ( K ) is Lindelöf the t p ( D ) -compact subsets of C(K) are fragmented by the supremum norm of C(K). As a consequence we obtain some Namioka type results and apply them to prove that if K is separable and C p ( K ) is Lindelöf, then K is metrizable if, and only if, there is a countable and dense...

Frames associated with expansive matrix dilations.

Kwok-Pun Ho (2003)

Collectanea Mathematica

We construct wavelet-type frames associated with the expansive matrix dilation on the Anisotropic Triebel-Lizorkin spaces. We also show the a.e. convergence of the frame expansion which includes multi-wavelet expansion as a special case.

Fréchet quotients of spaces of real-analytic functions

P. Domański, L. Frerick, D. Vogt (2003)

Studia Mathematica

We characterize all Fréchet quotients of the space (Ω) of (complex-valued) real-analytic functions on an arbitrary open set Ω d . We also characterize those Fréchet spaces E such that every short exact sequence of the form 0 → E → X → (Ω) → 0 splits.

Currently displaying 61 – 80 of 114