Displaying 81 – 100 of 425

Showing per page

A generalized projection decomposition in Orlicz-Bochner spaces

Henryk Hudzik, Ryszard Płuciennik, Yuwen Wang (2005)

Banach Center Publications

In this paper, a precise projection decomposition in reflexive, smooth and strictly convex Orlicz-Bochner spaces is given by the representation of the duality mapping. As an application, a representation of the metric projection operator on a closed hyperplane is presented.

A geometrical/combinatorical question with implications for the John-Nirenberg inequality for BMO functions

Michael Cwikel, Yoram Sagher, Pavel Shvartsman (2011)

Banach Center Publications

The first and last sections of this paper are intended for a general mathematical audience. In addition to some very brief remarks of a somewhat historical nature, we pose a rather simply formulated question in the realm of (discrete) geometry. This question has arisen in connection with a recently developed approach for studying various versions of the function space BMO. We describe that approach and the results that it gives. Special cases of one of our results give alternative proofs of the...

A Hardy type inequality for W 0 m , 1 ( Ω ) functions

Hernán Castro, Juan Dávila, Hui Wang (2013)

Journal of the European Mathematical Society

We consider functions u W 0 m , 1 ( Ω ) , where Ω N is a smooth bounded domain, and m 2 is an integer. For all j 0 , 1 k m - 1 , such that 1 j + k m , we prove that i u ( x ) d ( x ) m - j - k W 0 k , 1 ( Ω ) with k ( i u ( x ) d ( x ) m - j - k ) L 1 ( Ω ) C u W m , 1 ( Ω ) , where d is a smooth positive function which coincides with dist ( x , Ω ) near Ω , and l denotes any partial differential operator of order l .

A Hilbert cube compactification of the function space with the compact-open topology

Atsushi Kogasaka, Katsuro Sakai (2009)

Open Mathematics

Let X be an infinite, locally connected, locally compact separable metrizable space. The space C(X) of real-valued continuous functions defined on X with the compact-open topology is a separable Fréchet space, so it is homeomorphic to the psuedo-interior s = (−1, 1)ℕ of the Hilbert cube Q = [−1, 1]ℕ. In this paper, generalizing the Sakai-Uehara’s result to the non-compact case, we construct a natural compactification C ¯ (X) of C(X) such that the pair ( C ¯ (X), C(X)) is homeomorphic to (Q, s). In case...

A lifting theorem for locally convex subspaces of L 0

R. Faber (1995)

Studia Mathematica

We prove that for every closed locally convex subspace E of L 0 and for any continuous linear operator T from L 0 to L 0 / E there is a continuous linear operator S from L 0 to L 0 such that T = QS where Q is the quotient map from L 0 to L 0 / E .

A limit involving functions in W 0 1 , p ( Ω )

Biagio Ricceri (1999)

Colloquium Mathematicae

We point out the following fact: if Ω ⊂ n is a bounded open set, δ>0, and p>1, then l i m 0 + i n f V Ω | ( x ) | p d x = , where V = W 0 1 , p ( Ω ) : m e a s ( x Ω : | ( x ) | > δ ) > .

A localization property for B p q s and F p q s spaces

Hans Triebel (1994)

Studia Mathematica

Let f j = k a k f ( 2 j + 1 x - 2 k ) , where the sum is taken over the lattice of all points k in n having integer-valued components, j∈ℕ and a k . Let A p q s be either B p q s or F p q s (s ∈ ℝ, 0 < p < ∞, 0 < q ≤ ∞) on n . The aim of the paper is to clarify under what conditions f j | A p q s is equivalent to 2 j ( s - n / p ) ( k | a k | p ) 1 / p f | A p q s .

A martingale approach to general Franklin systems

Anna Kamont, Paul F. X. Müller (2006)

Studia Mathematica

We prove unconditionality of general Franklin systems in L p ( X ) , where X is a UMD space and where the general Franklin system corresponds to a quasi-dyadic, weakly regular sequence of knots.

Currently displaying 81 – 100 of 425