Normal structure of Musielak-Orlicz spaces.
Let Ω ⊂ ℝn, n ≥ 2, be a bounded domain and let α < n − 1. Motivated by Theorem I.6 and Remark I.18 of [Lions P.-L., The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana, 1985, 1(1), 145–201] and by the results of [Černý R., Cianchi A., Hencl S., Concentration-Compactness Principle for Moser-Trudinger inequalities: new results and proofs, Ann. Mat. Pura Appl. (in press), DOI: 10.1007/s10231-011-0220-3], we give a sharp estimate of the...
We introduce the spaces , , and of multifunctions. We prove that the spaces and are complete. Also, we get some convergence theorems.
Let denote the usual Hardy space of analytic functions on the unit disc . We prove that for every function there exists a linear operator defined on which is simultaneously bounded from to and from to such that . Consequently, we get the following results :1) is a Calderon-Mitjagin couple;2) for any interpolation functor , we have , where denotes the closed subspace of of all functions whose Fourier coefficients vanish on negative integers.These results also extend to Hardy...
Relations between different extensions of Toeplitz operators are studied. Additive properties of closed Toeplitz operators are investigated, in particular necessary and sufficient conditions are given and some applications in case of Toeplitz operators with polynomial symbols are indicated.
Dans cet article, en utilisant les algèbres de Jordan euclidiennes, nous étudions l’espace de Hardy d’un espace symétrique de type Cayley . Nous montrons que le noyau de Cauchy-Szegö de s’exprime comme somme d’une série faisant intervenir la fonction de Harish-Chandra de l’espace symétrique riemannien , la fonction de l’espace symétrique -dual de et les fonctions sphériques de l’espace symétrique ordonné . Nous établissons, dans le cas où la dimension de l’algèbre de Jordan associée...
The internal and boundary exact null controllability of nonlinear convective heat equations with homogeneous Dirichlet boundary conditions are studied. The methods we use combine Kakutani fixed point theorem, Carleman estimates for the backward adjoint linearized system, interpolation inequalities and some estimates in the theory of parabolic boundary value problems in Lk.