Continuité et uniforme continuité du spectre dans les algèbras de Banach
The main topic of the paper is the continuity of several kinds of generalized inversion of elements in a Banach algebra with identity. We introduce the notion of asymptotic generalized invertibility and completely characterize sequences of elements with this property. Based on this result, we derive continuity criteria which generalize the well known criteria from operator theory.
This survey deals with necessary and/or sufficient conditions for continuity of the spectrum and spectral radius functions at a point of a Banach algebra.
In this paper we give necessary and sufficient conditions in order that a contractive projection on a complex -algebra satisfies Seever’s identity.
En este trabajo presentamos aportaciones al tratamiento no-standard del Análisis Funcional en dos direcciones. En la sección 2 la envoltura no-standard de un espacio vectorial topológico, introducida por Luxemburg [7] y por Henson y Moore [2] se aplica al caso de un álgebra topológica. En las secciones 3 y 4 se dan caracterizaciones de elementos accesibles (pre-near-standard) y casi-standard (near-standard) en espacios vectoriales topológicos en términos de una familia filtrante densa de subespacios...
The notion of convergence in the generalized sense of a sequence of closed operators is generalized to the situation where the closed operators involved are affiliated with a Banach algebra of operators. Also, the concept of convergence in the generalized sense is extended to the context of a LMC-algebra, where it applies to the spectral theory of the algebra.
Dans ce travail, nous étudions le problème de décomposicion suivant: Étant donnés deux ouverts bornés de Cp, Ω1 et Ω2 (vérifiant certaines conditions) et étant donnée une matrice A(z), carrée d'ordre n, dont les coefficients sont des fonctions holomorphes dans Ω1 ∩ Ω2, ayant une prolongement C∞ à l'adhérence (Ω1 ∩ Ω2), peut-on trouver deux matrices A1(z), A2(z) holomorphes dans Ω1 et Ω2 respectivement et se prolongeant de manière C∞ à (Ω1) et (Ω2) telles que sur Ω1 ∩ Ω2 on aitA = A1A2.
Let A be a Banach algebra, and let d: A → A be a continuous derivation such that each element in the range of d has a finite spectrum. In a series of papers it has been proved that such a derivation is an inner derivation implemented by an element from the socle modulo the radical of A (a precise formulation of this statement can be found in the Introduction). The aim of this paper is twofold: we extend this result to the case where d is not necessarily continuous, and we give a complete description...